0000000000113987

AUTHOR

Roberto Pallini

Cilium induction triggers differentiation of glioma stem cells

Glioblastoma multiforme (GBM) possesses glioma stem cells (GSCs) that promote self-renewal, tumor propagation, and relapse. GBM has a poor prognosis, and currently, there are no curative options exist. Understanding the mechanisms of GSCs self-renewal can offer targeted therapeutic interventions. However, insufficient knowledge of the fundamental biology of GSCs is a significant bottleneck hindering these efforts. Here, we show that patient-derived GSCs recruit an elevated level of proteins that ensure the temporal cilium disassembly, leading to suppressed ciliogenesis. Depleting the cilia disassembly complex components at the ciliary base is sufficient to induce ciliogenesis in a subset of…

research product

Cilium induction triggers differentiation of glioma stem cells.

Glioblastoma multiforme (GBM) possesses glioma stem cells (GSCs) that promote self-renewal, tumor propagation, and relapse. Understanding the mechanisms of GSCs self-renewal can offer targeted therapeutic interventions. However, insufficient knowledge of GSCs' fundamental biology is a significant bottleneck hindering these efforts. Here, we show that patient-derived GSCs recruit elevated levels of proteins that ensure the temporal cilium disassembly, leading to suppressed ciliogenesis. Depleting the cilia disassembly complex components is sufficient to induce ciliogenesis in a subset of GSCs via relocating platelet-derived growth factor receptor-alpha (PDGFR-α) to a newly induced cilium. Im…

research product

Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediated destruction.

AbstractLife expectancy of patients affected by glioblastoma multiforme is extremely low. The therapeutic use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) has been proposed to treat this disease based on its ability to kill glioma cell lines in vitro and in vivo. Here, we show that, differently from glioma cell lines, glioblastoma multiforme tumors were resistant to TRAIL stimulation because they expressed low levels of caspase-8 and high levels of the death receptor inhibitor PED/PEA-15. Inhibition of methyltransferases by decitabine resulted in considerable up-regulation of TRAIL receptor-1 and caspase-8, down-regulation of PED/PEA-15, inhibition of cell growth, and …

research product

Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme

Abstract Purpose: Cancer stem cells (CSC) are thought to represent the population of tumorigenic cells responsible for tumor development. The stem cell antigen CD133 identifies such a tumorigenic population in a subset of glioblastoma patients. We conducted a prospective study to explore the prognostic potential of CSC analysis in glioblastoma patients. Experimental Design: We investigated the relationship between the in vitro growth potential of glioblastoma CSCs and patient death or disease progression in tumors of 44 consecutive glioblastoma patients treated with complete or partial tumorectomy followed by radiotherapy combined with temozolomide treatment. Moreover, we evaluated by immun…

research product

A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology

Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating …

research product

Abstract B5: A BMP7 variant inhibits angiogenesis in vitro and in vivo in part by downregulating VEGFR2 and FGFR1 expression in endothelial cells.

Abstract Glioblastoma multiforme (GBM), the most aggressive glioma, requires active angiogenesis for growth and survival. Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Previously, we demonstrated the use of a BMP7 variant (BMP7v) to differentiate glioblastoma stem-like cells (GSLCs) and significantly reduce their tumorigenic potential (Tate and Pallini et al. 2012). Using an in vitro co-culture endothelial cord formation assay, a surrogate of angiogenesis, and its cognate in vivo model, we investigated the role of BMP7v in VEGF, basic FGF (bFGF), tumor-driven a…

research product

Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells

Glioblastoma is a highly angiogenetic malignancy, the neoformed vessels of which are thought to arise by sprouting of pre-existing brain capillaries. The recent demonstration that a population of glioblastoma stem-like cells (GSCs) maintains glioblastomas indicates that the progeny of these cells may not be confined to the neural lineage. Normal neural stem cells are able to differentiate into functional endothelial cells. The connection between neural stem cells and the endothelial compartment seems to be critical in glioblastoma, where cancer stem cells closely interact with the vascular niche and promote angiogenesis through the release of vascular endothelial growth factor(VEGF) and str…

research product