0000000000114041
AUTHOR
Ningsu Luo
An LMI approach to vibration control of base-isolated building structures with delayed measurements
In this article, we address a convex optimisation approach to the problem of state-feedback H∞ control design for vibration reduction of base-isolated building structures with delayed measurements, where the delays are time-varying and bounded. An appropriate Lyapunov-Krasovskii functional and some free-weighting matrices are utilised to establish some delay-range-dependent sufficient conditions for the design of desired controllers in terms of linear matrix inequalities. The controller, which guarantees asymptotic stability and an H∞ performance, simultaneously, for the closed-loop system of the structure, is then developed. The performance of the controller is evaluated by means of simula…
An LMI approach to quantized H<inf>&#x221E;</inf> control of uncertain linear systems with network-induced delays
This paper deals with a convex optimization approach to the problem of robust network-based H ∞ control for linear systems connected over a common digital communication network with norm-bounded parameter uncertainties. Firstly, we investigate the effect of both the output quantization levels and the network conditions under static quantizers. Secondly, by introducing a descriptor technique, using Lyapunov-Krasovskii functional and a suitable change of variables, new required sufficient conditions are established in terms of delay-range-dependent linear matrix inequalities for the existence of the desired network-based quantized controllers with simultaneous consideration of network induced…
Heuristic and Backstepping Control Strategies for Semiactive Suspension in Automotive Systems Equipped with MR Dampers
Abstract This paper deals with the problem of semiactive vibration reduction in a class of automotive systems. Most conventional suspensions use passive devices to absorb impacts and vibrations, which is generally difficult to adapt to the uncertain circumstances. Semiactive suspension techniques promise a solution to the above problem with some comparatively better features than active and passive suspension devices. In this work, the semiactive suspension with magnetorheological (MR) dampers is applied for the vibration attenuation. Both backstepping and heuristic control strategies are proposed. In the design of backstepping controller, the Dahl model of the MR damper is used to estimate…
Landing gear suspension control through adaptive backstepping techniques with H∞ performance
Author's version of a chapter published in the book: Proceedings of the 18th IFAC World Congress 2011. Also available from the publisher at: http://dx.doi.org/10.3182/20110828-6-IT-1002.00589
Semiactive control for floating offshore wind turbines subject to aero-hydro dynamic loads
Wind and wave dynamic loads might cause undesirable vibrations that affect the structure integrity and system performance of floating offshore wind turbines. This paper addresses the problem of dynamic load mitigation by using semiactive control techniques with the tuned liquid column dampers placed on the turbine’s tower. The control law is formulated based on the mixed H2/H∞ methods for ensuring the system stability and reliability. Furthermore, the proposed controller only uses output feedback so as to avoid the dependence on the knowledge of the states of the system. Peer Reviewed
A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations
Accepted version of an article in the journal: Journal of the Franklin Institute-Engineering and Applied Mathematics. The definitive version can be found on Sciverse: http://dx.doi.org/10.1016/j.jfranklin.2010.03.004 In this paper, the problem of robust fault detection filter (RFDF) design for a class of linear systems with some nonlinear perturbations and mixed neutral and discrete time-varying delays is investigated. By using a descriptor technique, Lyapunov-Krasovskii functional and a suitable change of variables, new required sufficient conditions are established in terms of delay-dependent linear matrix inequalities (LMIs) to synthesize the residual generation scheme. Based on the Luen…
Frequency domain control based on quantitative feedback theory for vibration suppression in structures equipped with magnetorheological dampers
This is an author-created, un-copyedited version of an article accepted for publication in Smart Materials and Structures. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at http://dx.doi.org/10.1088/0964-1726/18/9/095041 This paper addresses the problem of designing quantitative feedback theory (QFT) based controllers for the vibration reduction in a structure equipped with an MR damper. In this way, the controller is designed in the frequency domain and the natural frequencies of the structure can be directly accounted for in the process. T…
APPLICATION OF ADAPTIVE WAVELET NETWORKS FOR VIBRATION CONTROL OF BASE ISOLATED STRUCTURES
Accepted version of an article from the journal: International Journal of Wavelets, Multiresolution & Information Processing. Official version article published as International Journal of Wavelets, Multiresolution & Information Processing, 2010 8(5), 773-791. doi: 10.1142/s0219691310003778 © World Scientific Publishing Company http:// http://www.worldscinet.com/ijwmip/ This paper presents an application of wavelet networks (WNs) in identification and control design for a class of structures equipped with a type of semiactive actuators, which are called magnetorheological (MR) dampers. The nonlinear model is identified based on a WN framework. Based on the technique of feedback linearizatio…
Semiactive Backstepping Control for Vibration Reduction in a Structure with Magnetorheological Damper Subject to Seismic Motions
The use of magnetorheological (MR) dampers for mitigating vibrations caused by seismic motions in civil engineering structures has attracted much interest in the scientific community because of the advantages of this class of device. It is known that MR dampers can generate high damping forces with low energy requirements and low cost of production. However, the complex dynamics that characterize MR dampers make difficult the control design for achieving the vibration reduction goals in an efficient manner. In this article, a semiactive controller based on the backstepping technique is proposed. The controller was applied to a three-story building with an MR damper at its first floor subje…
Semiactive vibration control of offshore wind turbine towers with tuned liquid column dampers using H<inf>&#x221E;</inf> output feedback control
This short paper addresses the problem of vibration in wind turbine towers. These structures are subject to winds and waves causing undesirable vibrations that affect the structure integrity and system performance. In order to mitigate the vibrations of the tower, a controllable tuned liquid column damper is placed on its top. We propose the use of H ∞ control techniques to formulate a control law. Furthermore, the controller uses output feedback to avoid the dependence on the knowledge of the states of the system. Simulation results illustrate the design procedure proposed in this paper.
Robust fault detection filter design for a class of linear systems with mixed time-varying delays and nonlinear perturbations
In this note, the problem of robust fault detection filter (RFDF) design for a class of linear systems subjected to some nonlinear perturbations and mixed neutral and discrete time-varying delays is investigated based on an H ∞ performance condition. By introducing a descriptor technique, using Lyapunov-Krasovskii functional and a suitable change of variables, new required sufficient conditions are established in terms of delay-dependent linear matrix inequalities (LMIs) to synthesize the residual generation scheme. Based on Luenberger type observers, the explicit expression of the filters is derived for the fault such that both asymptotic stability and a prescribed level of disturbance att…
Adaptive synchronization of master-slave systems with mixed neutral and discrete time-delays and nonlinear perturbations
This paper investigates the delay-dependent adaptive synchronization problem of the master and slave structure of linear systems with both constant neutral and time-varying discrete time-delays and nonlinear perturbations based on the Barbalat lemma and matching conditions. An adaption law which includes the master-slave parameters is obtained by using the Lyapunov functional method and inequality techniques to synchronize the master-slave systems without the knowledge of upper bounds of perturbation terms. Particularly, it is shown that the synchronization speed can be controlled by adjusting the update gain of the synchronization signal. A numerical example has been given to show the effe…
A convex optimization approach for vibration control of base isolated structures with limited wireless communication capacity
The problem of H ∞ control design for vibration reduction of a base isolated structure with limited wireless communication capacity is studied in this paper. The network under consideration is subjected to measurement quantization, signal transmission delay, and data packet dropout, which appear typically in a network environment. Based on Lyapunov-Krasovskii functional (LKF) theory, some delay-range-dependent conditions are established for the existence of desired controllers such that the resulting closed-loop system is asymptotically stable and its performance is kept within a prescribed level. Finally, some simulation results are given to illustrate the effectiveness of our method.
Feedback vibration control of a base-isolated building with delayed measurements using h<inf>&#x221E;</inf> techniques
In this paper we address the problem of vibration reduction of buildings with delayed measurements, where the delays are time-varying and bounded. We focus on a convex optimization approach to the problem of state-feedback H ∞ control design. An appropriate Lyapunov-Krasovskii functional and some free weighting matrices are used to establish some delay-range-dependent sufficient conditions for the design of desired controllers in terms of linear matrix inequalities (LMIs). The controller, which guarantees asymptotic stability and an H ∞ performance, simultaneously, for the closed-loop system of the structure, is then developed. The performance of the controller is evaluated through the simu…
Robust H<inf>&#x221E;</inf> control of Markovian jump systems with mixed time delays
In this paper, the problem of stability analysis and control synthesis for Markovian jump linear systems with time delays and norm-bounded uncertainties is studied. The model under consideration consists of different time-invariant discrete, neutral and distributed delays. Delay-dependent sufficient conditions for the design of a mode-dependent delayed state feedback H ∞ control are given in terms of linear matrix inequalities (LMIs). A controller which guarantees stochastic stability and a prescribed level of H ∞ performance for the closed-loop system is then developed. A Lyapunov-Krasovskii functional (LKF) method underlies the control design. A numerical example with simulation results i…
Feedback vibration control of a base-isolated building with delayed measurements using h∞ techniques
Published version of a paper presented at the American Control Conference (ACC), 2010. (c) 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works n this paper we address the problem of vibration reduction of buildings with delayed measurements, where the delays are time-varying and bounded. We focus on a convex optimization approach to the problem of state-feedback H ∞ control design. An appropriate …
Vibration control of base-isolated structures using mixed H-2/H-infinity output-feedback control
Published post-print of an article in the journal: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering Available from the publisher at: http://dx.doi.org/10.1243/09596518jsce730 A mixed H-2/H-infinity output-feedback control design methodology for vibration reduction of base-isolated building structures modelled in the form of second-order linear systems is presented. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities. A controller that guarantees asymptotic stability and a mixed H-2/H-infinity performance for the closed-loop system of the structure is developed, based on a Lyapuno…
Landing gear suspension control through adaptive backstepping techniques with H∞ performance
Author's version of a chapter published in the book: Proceedings of the 18th IFAC World Congress 2011. Also available from the publisher at: http://dx.doi.org/10.3182/20110828-6-IT-1002.00589 Landing gear suspension systems fulfill the tasks of absorbing the vertical energy of the touch-down as well as providing passenger and crew comfort with a smooth ground ride before take-off and after landing. They are also designed to have optimal performance in the case of a hard landing. In general, the tasks of aircraft landing gears are complex and sometimes lead to a number of contradictory requirements. Although there are existing modifications of aircraft shock absorbers to reduce the problem, …
An LMI approach to quantized H∞ control of uncertain linear systems with network-induced delays
Accepted version of an article published by IEEE.(c) 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works Published version:http://dx.doi.org/10.1109/SYSTOL.2010.5676063 his paper deals with a convex optimization approach to the problem of robust network-based Hinf control for linear systems connected over a common digital communication network with norm-bounded parameter uncertainties. Firstly, we…
Semiactive vibration control of nonlinear structures through adaptive backstepping techniques withH∞performance
This article presents a new approach to the vibration mitigation problem in structures subject to seismic motions. These kinds of structures are characterised by the uncertainties of the parameters that describe their dynamics, such as stiffness and damping coefficients. Moreover, the dampers used to mitigate the vibrations caused by earthquakes are usually nonlinear devices with frictional or hysteretic dynamics. We propose an adaptive backstepping controller to account for the uncertainties and the nonlinearities. The controller is formulated in such a way that it satisfies an H∞ performance. It is designed for a 10-storey building whose base is isolated with a frictional damper (passive …
A mixed H<inf>2</inf>/H<inf>&#x221E;</inf>-based semiactive control for vibration mitigation in flexible structures
In this paper, we address this problem through the design of a semiactive controller based on the mixed H 2 /H ∞ control theory. The vibrations caused by the seismic motions are mitigated by a semiactive damper installed in the bottom of the structure. It is meant by semiactive damper, a device that absorbs but cannot inject energy into the system. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller that guarantees asymptotic stability and a mixed H 2 /H ∞ performance is then developed. An algorithm is proposed to handle the semiactive nature of the actuator. The performance of the controller is experimentally evalu…
Stability analysis of neutral systems with mixed time-varying delays and nonlinear perturbations
In this paper, the problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear perturbations are addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free weighting matrices and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent and distributed-delay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be easily solved by existing convex optimizat…
Semiactive Control Methodologies for Suspension Control With Magnetorheological Dampers
Authors version of an article published in the journal: IEEE/ASME Transactions on Mechatronics. Also available from the publisher at: http://dx.doi.org/10.1109/TMECH.2011.2107331 Suspension systems are one of the most critical components of transportation vehicles. They are designed to provide comfort to the passengers to protect the chassis and the freight. Suspension systems are normally provided with dampers that mitigate these harmful and uncomfortable vibrations. In this paper, we explore two control methodologies (in time and frequency domain) used to design semiactive controllers for suspension systems that make use of magnetorheological dampers. These dampers are known because of th…
Robust synchronization and fault detection of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations
In this paper, the problem of robust synchronization and fault detection for a class of master-slave systems subjected to some nonlinear perturbations and mixed neutral and discrete time-varying delays is investigated based on an H ∞ performance condition. By introducing a descriptor technique, using Lyapunov-Krasovskii functional and a suitable change of variables, new required sufficient conditions are established in terms of delay-dependent linear matrix inequalities to synthesize the residual generation scheme. The explicit expression of the synchronization law is derived for the fault such that both asymptotic stability and a prescribed level of disturbance attenuation are satisfied fo…
Vibration control of base-isolated structures using mixed H2/H∞ output-feedback control
A mixed H2/ H∞ output-feedback control design methodology for vibration reduction of base-isolated building structures modelled in the form of second-order linear systems is presented. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities. A controller that guarantees asymptotic stability and a mixed H2/ H∞ performance for the closed-loop system of the structure is developed, based on a Lyapunov function. The performance of the controller is evaluated by means of simulations in MATLAB/Simulink.