0000000000114071
AUTHOR
S.s. Huh
A Demonstrator for a new Axial PET Concept
In PET imaging, improving sensitivity while maintaining very good spatial resolution is crucial. To achieve this goal, we propose a novel concept of PET scanner, with axially arranged crystals, providing a high sensitivity and a 3D reconstruction of the gamma interaction point. The trans-axial coordinate is given by the crystal hit, while the z coordinate is reconstructed by the weighted distribution of light escaping the crystal and entering into an array of Wave Length Shifting (WLS) strips interleaving the crystal layers. This novel configuration allows full identification of Compton interactions in the crystals that can be included in image reconstruction thus enhancing the sensitivity.…
A prototype of very high resolution small animal PET scanner using silicon pad detectors
Abstract A very high-resolution small animal positron emission tomograph (PET), which can achieve sub-millimeter spatial resolution, is being developed using silicon pad detectors. The prototype PET for a single slice instrument consists of two 1 mm thick silicon pad detectors, each containing a 32×16 array of 1.4×1.4 mm pads readout with four VATAGP3 chips which have 128 channels low-noise self-triggering ASIC in each chip, coincidence units, a source turntable and tungsten slice collimator. The silicon detectors were located edgewise on opposite sides of a 4 cm field-of-view to maximize efficiency. Energy resolution is dominated by electronic noise, which is 0.98% (1.38 keV) FWHM at 140.5…
Silicon as an Unconventional Detector in Positron Emission Tomography.
Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been a successful in achieving ~5mm FWHM spatial resolution in human studies and ~1mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches. Foremost is it…
A device to measure the effects of strong magnetic fields on the image resolution of PET scanners
Abstract Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. As these systems approach sub-millimeter resolutions, the range of the positron is becoming the dominant contribution to image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as Ga 68 and Tc 94 m , which are gaining importance in small animal studies, the width of the annihilation point distribution dominates the spatial resolution. This positron range effect can be reduced by embedding the field of view of the PET scanner in a strong magnetic field. In…
Development of a High Precision Axial 3-D PET for Brain Imaging
We describe a PET device based on a novel method to extract the coordinates of the interaction point of the 511keV γ rays from 100 mm long and thin LYSO (Lutetium Yttrium OxyorthoSilicate) scintillator bars, positioned axially in the tomograph. The coordinate along the hit crystal is measured by using a hodoscope of Wave Length Shifting (WLS) plastic strips mounted perpendicularly to each plane of scintillators. As photodetectors, new Geiger mode Avalanche PhotoDetectors (G-APDs) with integrated electronics are being used to detect both the hit crystal in a block (x and y coordinates) and the interaction point in the crystal (z coordinate) through the light escaping from the crystal and tra…
A Pixelated Silicon Positron Sensitive Imaging Probe
A pixelated silicon positron sensitive imaging probe is under development to precisely localize superficially located tumors accumulating 18F-FDG. 18F-FDG has been a radioisotope of interest mainly because of the high uptake in tumors and the relatively short positron range. Silicon detectors have generally low detection efficiency for high energy photons and can be used for positron detection. We present a pixelated silicon positron sensitive imaging probe that has the 1.4-by-1.4-by-1.0 mm pixel size with equivalent electronic noise of ~1.2 keV FWHM. The small pixel size leads to the high spatial resolution. Probe movement in conjunction with appropriate reconstruction will allow sub-pixel…
Performance evaluation of a very high resolution small animal PET imager using silicon scatter detectors
A very high resolution positron emission tomography (PET) scanner for small animal imaging based on the idea of inserting a ring of high-granularity solid-state detectors into a conventional PET scanner is under investigation. A particularly interesting configuration of this concept, which takes the form of a degenerate Compton camera, is shown capable of providing sub-millimeter resolution with good sensitivity. We present a Compton PET system and estimate its performance using a proof-of-concept prototype. A prototype single-slice imaging instrument was constructed with two silicon detectors 1 mm thick, each having 512 1.4 mm x 1.4 mm pads arranged in a 32 x 16 array. The silicon detector…
A high-resolution PET demonstrator using a silicon "magnifying glass".
Abstract To assist ongoing investigations of the limits of the tradeoff between spatial resolution and noise in PET imaging, several PET instruments based on silicon-pad detectors have been developed. The latest is a segment of a dual-ring device to demonstrate that excellent reconstructed image resolution can be achieved with a scanner that uses highresolution detectors placed close to the object of interest or surrounding a small field-of-view in combination with detectors having modest resolution at larger radius. The outer ring of our demonstrator comprises conventional BGO block detectors scavenged from a clinical PET scanner and located at a 500 mm radius around a 50 mm diameter field…
AX-PET: A novel PET detector concept with full 3D reconstruction
We describe the concept and first experimental tests of a novel 3D axial Positron Emission Tomography (PET) geometry. It allows for a new way of measuring the interaction point in the detector with very high precision. It is based on a matrix of long Lutetium-Yttrium OxyorthoSilicate (LYSO) crystals oriented in the axial direction, each coupled to one Geiger Mode Avalanche Photodiode (G-APD) array. To derive the axial coordinate, Wave Length Shifter (WLS) strips are mounted orthogonally and interleaved between the crystals. The light from the WLS strips is read by custom-made G-APDs. The weighted mean of the signals in the WLS strips has proven to give very precise axial resolution. The ach…