Attracteurs de Lorenz de variété instable de dimension arbitraire
Abstract We construct the first examples of flows with robust multidimensional Lorenz-like attractors: the singularity contained in the attractor may have any number of expanding eigenvalues, and the attractor remains transitive in a whole neighbourhood of the initial flow. These attractors support a Sinai-Ruelle-Bowen SRB-measure and, contrary to the usual (low-dimensional) Lorenz models, they have infinite modulus of structural stability.