0000000000114990

AUTHOR

Bin Chen

showing 5 related works from this author

Evolution of structural and electronic properties of TiSe2 under high pressure

2021

A pressure-induced structural phase transition and its intimate link with the superconducting transition was studied for the first time in TiSe2 up to 40 GPa at room temperature using X-ray diffraction, transport measurement, and first-principles calculations. We demonstrate the occurrence of a first-order structural phase transition at 4 GPa from the standard trigonal structure (S.G.P3¯m1) to another trigonal structure (S-G-P3¯c1). Additionally, at 16 GPa, the P3¯c1 phase spontaneously transforms into a monoclinic C2/m phase, and above 24 GPa, the C2/m phase returns to the initial P3¯m1 phase. Electrical transport results show that metallization occurs above 6 GPa. The charge density wave …

DiffractionSuperconductivityPhase transitionSuperconductivityMaterials scienceCondensed matter physics:Física [Àrees temàtiques de la UPC]Transition metalPhase (matter)General Materials SciencePhysical and Theoretical ChemistrySuperconductivitatCharge density waveMonoclinic crystal systemPhase diagram
researchProduct

Resilient urban governance: Adaptation and innovation in the face of the Coronavirus pandemic

2023

The pervasive, unpredictable, and unmanageable outcomes gener- ated by the coronavirus pandemic portray many features of what have been defined as “super-wicked ”problems ( Levin et al., 2012 ). In this regard, defeating COVID-19 is not the only issue. The main problem is, rather, how to make our societies more resilient also to possible similar kinds of viruses that might affect our lives in the near future, provided the structure of the socio-economic and ecological systems where we live. As noted by Levin et al. (2012 , p. 124), ‘super-wicked’ problems “comprise four key features: time is running out; those who cause the problem also seek to provide a solution; the central authority need…

ResilienceSettore SECS-P/07 - Economia AziendaleCoronaviruSuper-wicked problemDynamic Performance GovernanceSustainable Transition
researchProduct

Giant conductivity enhancement: Pressure-induced semiconductor-metal phase transition in Cd0.90Zn0.1Te

2019

Element doping and pressure compression may change material properties for improved performance in applications. We report pressure-induced metallization in the semiconductor $\mathrm{C}{\mathrm{d}}_{0.90}\mathrm{Z}{\mathrm{n}}_{0.1}\mathrm{Te}$. Transport measurements showed an overall resistivity drop of 11 orders of magnitude under compression up to 12 GPa, which is indicative of a metallization transition. X-ray diffraction measurements revealed that the sample underwent a structural transition from a cubic-$F4\overline{3}m$ phase (zinc blende) to a cubic-$Fm\overline{3}m$ phase (rock salt) at about 5.5 GPa, followed by another transition to an orthorhombic $Cmcm$ structure at 13 GPa. A…

DiffractionPhase transitionMaterials scienceCondensed matter physicsDoping02 engineering and technologyConductivity021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials Sciencesymbols.namesakeElectrical resistivity and conductivity0103 physical sciencessymbolsOrthorhombic crystal system010306 general physics0210 nano-technologyElectronic band structureRaman spectroscopyPhysical Review B
researchProduct

Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories

2017

Multiciliated ependymal (E1) cells line the brain ventricles and are essential for brain homeostasis. We previously identified in the lateral ventricles a rare ependymal subpopulation (E2) with only two cilia and unique basal bodies. Here we show that E2 cells form a distinct biciliated epithelium extending along the ventral third into the fourth ventricle. In the third ventricle floor, apical profiles with only primary cilia define an additional uniciliated (E3) epithelium. E2 and E3 cells' ultrastructure, marker expression and basal processes indicate that they correspond to subtypes of tanycytes. Using sonic hedgehog lineage tracing, we show that the third and fourth ventricle E2 and E3 …

Male0301 basic medicineEpendymal CellScienceEpendymoglial CellsGene ExpressionGeneral Physics and AstronomyMice TransgenicS100 Calcium Binding Protein beta SubunitFourth ventricleArticleGeneral Biochemistry Genetics and Molecular BiologyNestinMice03 medical and health sciencesLateral ventriclesEpendymaGlial Fibrillary Acidic ProteinmedicineAnimalsHumansVimentinCell LineageHedgehog ProteinsCiliaSonic hedgehogAgedBrain VentricleFloor plateBrain MappingMultidisciplinaryThird ventriclebiologyQCD24 AntigenCell DifferentiationGeneral ChemistryAnatomyMiddle Aged030104 developmental biologymedicine.anatomical_structureCell Trackingbiology.proteinFemaleNerve NetEpendymaBiomarkersNature Communications
researchProduct

Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon

2019

Enhanced aerosol abundance in the upper troposphere and lower stratosphere (UTLS) associated with the Asian summer monsoon (ASM) is referred to as the Asian Tropopause Aerosol Layer (ATAL). The chemical composition, microphysical properties, and climate effects of aerosols in the ATAL have been the subject of discussion over the past decade. In this work, we use the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model at a relatively fine grid resolution (about 1.1×1.1∘) to numerically simulate the emissions, chemistry, and transport of aerosols and their precursors in the UTLS within the ASM anticyclone during the years 2010–2012. We find a pronounced maximum of aerosol extin…

ECHAMAtmospheric SciencegeographyPlateaugeography.geographical_feature_category010504 meteorology & atmospheric sciences010501 environmental sciencesMineral dustrespiratory systemAtmospheric sciences01 natural scienceslcsh:QC1-999Aerosollcsh:ChemistryTropospherelcsh:QD1-999Anticycloneddc:550TropopauseStratospherelcsh:Physics0105 earth and related environmental sciences
researchProduct