0000000000115010

AUTHOR

Eduard Grune

showing 9 related works from this author

One-Step Anionic Copolymerization Enables Formation of Linear Ultrahigh-Molecular-Weight Block Copolymer Films Featuring Vivid Structural Colors in t…

2018

Ultrahigh-molecular-weight (UHMW) tapered block copolymers (BCPs) consisting of polyisoprene-block-poly(4-methylstyrene) featuring overall molar masses in the range of 1101–2033 kg mol–1 (Mw) are synthesized via a convenient one-step anionic copolymerization protocol. The obtained UHMW BCPs are investigated by differential scanning calorimetry, size exclusion chromatography, and 1H NMR spectroscopy. Microphase separation for the UHMW BCPs in the bulk state is investigated by transmission electron microscopy (TEM) measurements and scanning electron microscopy (SEM), revealing well-ordered lamellar and spherical domains with large domain sizes in the range of 100–200 nm. Excellent order and p…

Materials scienceMolar massScanning electron microscope02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesDifferential scanning calorimetryChemical engineeringTransmission electron microscopyCopolymerGeneral Materials ScienceLamellar structureSelf-assembly0210 nano-technologyStructural colorationACS applied materialsinterfaces
researchProduct

Effect of the Substituent Position on the Anionic Copolymerization of Styrene Derivatives: Experimental Results and Density Functional Theory Calcula…

2019

In a combined synthetic, kinetic and theoretical study, the living anionic copolymerization of styrene and its ring-methylated derivatives ortho-, meta-, and para-methylstyrene (MS) was examined by real-time 1H NMR spectroscopy in the nonpolar solvents toluene-d8 and cyclohexane-d12 as well as by density functional theory calculations. Based on the NMR kinetics data, reactivity ratios for each comonomer pair were determined by the Kelen–Tudős method and numerical integration of the copolymerization equation (Contour software). The reaction pathway was modeled and followed by density functional theory (DFT) calculations to validate and predict the experimentally derived reactivity ratios. Un…

Polymers and PlasticsComonomerOrganic ChemistrySubstituent02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesStyreneInorganic Chemistrychemistry.chemical_compoundchemistryComputational chemistryMaterials ChemistryCopolymerReactivity (chemistry)Density functional theoryGradient copolymers0210 nano-technologyMethyl groupMacromolecules
researchProduct

Tapered Multiblock Copolymers Based on Isoprene and 4-Methylstyrene: Influence of the Tapered Interface on the Self-Assembly and Thermomechanical Pro…

2019

The synthesis of tapered multiblock copolymers by statistical living anionic copolymerization of a mixture of isoprene (I) and 4-methylstyrene (4MS) in cyclohexane is based on vastly different reac...

Materials sciencePolymers and PlasticsCyclohexaneOrganic ChemistryMultiblock copolymer02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryChemical engineeringMaterials ChemistryCopolymer0210 nano-technologyIsopreneMacromolecules
researchProduct

Anionic Copolymerization Enables the Scalable Synthesis of Alternating (AB)n Multiblock Copolymers with High Molecular Weight in n/2 Steps

2018

Based on the highly disparate reactivities of isoprene (I, rI = 25.4) and 4-methylstyrene (4MS, r4MS = 0.007) in the anionic copolymerization in nonpolar media, a general strategy for the rapid and scalable synthesis of tapered multiblock copolymers with an extremely steep gradient has been developed. A repetitive addition strategy of a mixture of isoprene and 4MS leads to a tapered diblock in each case, giving access to linear alternating multiblock copolymers of the (AB)n type with up to 10 blocks. All multiblock copolymers showed narrow molecular weight distributions (dispersity Đ = 1.04–1.12). High molecular weights in the range of 80 to 400 kg mol–1 were achieved. Due to the incompatib…

ToughnessMaterials sciencePolymers and PlasticsMolecular massOrganic ChemistryDispersityMultiblock copolymer02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryChemical engineeringMolar ratioMaterials ChemistryCopolymer0210 nano-technologyIsopreneACS Macro Letters
researchProduct

Kontrollierte Polymermikrostruktur in anionischer Polymerisation durch Kompartimentierung

2018

Chemistry02 engineering and technologyGeneral Medicine010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Controlling the Polymer Microstructure in Anionic Polymerization by Compartmentalization.

2018

An ideal random anionic copolymerization is forced to produce gradient structures by physical separation of two monomers in emulsion compartments. One monomer (M) is preferably soluble in the droplets, while the other one (D) prefers the continuous phase of a DMSO-in-cyclohexane emulsion. The living anionic copolymerization of two activated aziridines is thus confined to the DMSO compartments as polymerization occurs selectively in the droplets. Dilution of the continuous phase adjusts the local concentration of monomer D in the droplets and thus the gradient of the resulting copolymer. The copolymerizations in emulsion are monitored by real-time 1 H NMR kinetics, proving a change of the re…

chemistry.chemical_classificationChemistryKineticstechnology industry and agriculture02 engineering and technologyGeneral ChemistryPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesDilutionchemistry.chemical_compoundAnionic addition polymerizationMonomerPolymerizationChemical engineeringEmulsionCopolymer0210 nano-technologyAngewandte Chemie (International ed. in English)
researchProduct

Die lebende anionische Polymerisation

2017

Zusammenfassung Vor sechzig Jahren entdeckte Michael Szwarc die lebende anionische Polymerisation. Trotz ihrer hohen synthetischen Anforderungen ist sie bis heute die praziseste Methode zur Herstellung von wohldefinierten Polymeren und inspirierte zahlreiche neue Polymerisationsmethoden. Masgeschneiderte Blockcopolymere finden sich in den verschiedensten Anwendungen von High-End-Verpackungsmaterialien uber die Elektronik bis hin zu Nanomedizin.

010407 polymersGeneral Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesChemie in unserer Zeit
researchProduct

One-Step Block Copolymer Synthesis versus Sequential Monomer Addition: A Fundamental Study Reveals That One Methyl Group Makes a Difference

2018

Block copolymers of polyisoprene and polystyrene are key materials for polymer nanostructures as well as for several commercially established thermoplastic elastomers. In a combined experimental and kinetic Monte Carlo simulation study, the direct (i.e., statistical) living anionic copolymerization of a mixture of isoprene (I) and 4-methylstyrene (4MS) in nonpolar media was investigated on a fundamental level. In situ 1H NMR spectroscopy enabled to directly monitor gradient formation during the copolymerization and to determine the nature of the gradient. In addition, a precise comparison with the established copolymerization of isoprene and styrene (I/S) was possible. Statistical copolymer…

chemistry.chemical_classificationMaterials sciencePolymers and PlasticsComonomerOrganic Chemistry02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesStyreneInorganic Chemistrychemistry.chemical_compoundMonomerchemistryChemical engineeringMaterials ChemistryCopolymerPolystyreneThermoplastic elastomer0210 nano-technologyIsopreneMacromolecules
researchProduct

Towards bio-based tapered block copolymers: the behaviour of myrcene in the statistical anionic copolymerisation

2019

To explore the potential of myrcene (Myr) as a bio-based monoterpene comonomer for styrenic copolymers and to establish its general applicability for the carbanionic copolymerisation, several statistical copolymerisations of myrcene and common monomers like isoprene (I), styrene (S) and 4-methylstyrene (4MS) were carried out in cyclohexane and monitored by in situ1H NMR spectroscopy. Real-time NMR kinetic studies permitted the determination of the reactivity ratios and the composition profile for each monomer combination. While the copolymerisation of Myr/I yielded a gradient copolymer and reactivity ratios of moderate disparity (rMyr = 4.4; rI = 0.23), the statistical copolymerisation of M…

Polymers and PlasticsComonomerOrganic ChemistrymyrBioengineering02 engineering and technologyNuclear magnetic resonance spectroscopy010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistry0104 chemical sciencesStyrenechemistry.chemical_compoundMonomerchemistryPolymer chemistryCopolymerReactivity (chemistry)0210 nano-technologyGlass transitionPolymer Chemistry
researchProduct