0000000000115039

AUTHOR

D. Protopopescu

showing 17 related works from this author

Search for heavy neutrinos in \(\pi ^{ + } \to \mu ^{ + }\nu \) decay and status of lepton universality test in the PIENU experiment

2019

International audience; In the present work of the PIENU experiment, heavy neutrinos were sought in pion decays \(\pi ^{ + } \to \mu ^{ + }\nu \). No evidence for extra peak was found in the muon kinetic energy spectrum and 90% confidence level upper limits were set on the neutrino mixing matrix \(|U_{\mu i}|^{2}\) in the mass range of 15.7 to 33.8 MeV/c^2, improving an order of magnitude over previous experiments. Current status of lepton universality test is also reported.

PhysicsParticle physicsMuonpi+ --> muon+ neutrinopi: decayneutrino: heavy: search forUniversality (philosophy)Pontecorvo–Maki–Nakagawa–Sakata matrixkineticenergy spectrumKinetic energyPion[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentNeutrinoneutrino: mixingOrder of magnitudeParticle Physics - ExperimentLeptonexperimental resultslepton: universality
researchProduct

Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region

2009

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.

Physics010308 nuclear & particles physicsScatteringNuclear TheoryGeneral Physics and AstronomyScintillator7. Clean energy01 natural sciencesNuclear physicsDipoleDeuterium0103 physical sciencesMagnetic form factorNeutron detectionHigh Energy Physics::ExperimentNeutronNuclear Experiment010306 general physicsElectron scatteringPhysical Review Letters
researchProduct

Improved search for two body muon decay μ+→e+XH

2020

Charged lepton flavor violating muon decay ${\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}{X}_{H}$, where ${X}_{H}$ is a massive neutral boson, was sought by searching for extra peaks in the muon decay ${\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}\ensuremath{\nu}\overline{\ensuremath{\nu}}$ energy spectrum in the ${m}_{{X}_{H}}$ mass region $47.8--95.1\text{ }\text{ }\mathrm{MeV}/{c}^{2}$. No signal was found and 90% confidence level upper limits were set on the branching ratio $\mathrm{\ensuremath{\Gamma}}({\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}{X}_{H})/\mathrm{\ensuremath{\Gamma}}({\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}\ensuremath{\nu}\overline{…

PhysicsParticle physicsMuon010308 nuclear & particles physicsBranching fractionHigh Energy Physics::Phenomenology0103 physical sciencesEnergy spectrumHigh Energy Physics::Experiment010306 general physics01 natural sciencesBosonLeptonPhysical Review D
researchProduct

Search for heavy neutrinos at the NA48/2 and NA62 experiments at CERN

2018

© The Authors, published by EDP Sciences. The NA48/2 experiment at CERN has collected large samples of charged kaons decaying into a pion and two muons for the search of heavy nuetrinos. In addition, its successor NA62 has set new limits on the rate of charged kaon decay into a heavy neutral lepton (HNL) and a lepton, with = e, µ, using the data collected in 2007 and 2015. New limits on heavy neutrinos from kaon decays into pions, muons and positrons are presented in this report.

PhysicsParticle physicsLarge Hadron ColliderMuonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsPhysicsQC1-999Nuclear TheoryHigh Energy Physics::PhenomenologyHeavy neutrino01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnuclearePhysics and Astronomy (all)Pion0103 physical sciencesHigh Energy Physics::ExperimentKaon decaysNeutrinoHeavy neutrinoNuclear Experiment010306 general physicsKaon decays Heavy neutrinoParticle Physics - ExperimentLepton
researchProduct

Searches for lepton number violating $K^+$ decays

2019

The NA62 experiment at CERN reports a search for the lepton number violating decays K+ -> pi(-)e(+)e(+) and K+ -> pi(-)mu(+)mu(+) using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10(-10) and 4.2 x 10(-11) are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively.

branching ratio: upper limitK+: rare decayNA62 experiment01 natural sciencesNA62Settore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - Experimentelectron: pair productionHigh Energy Physics - Experiment (hep-ex)EconomicaK+: branching ratio[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]K meson decayPhysicsLarge Hadron ColliderElectroweak interactionlcsh:QC1-999muon: pair productionlepton number violationK+: semileptonic decayK+: secondary beamParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsCERN LabS010.46FOS: Physical scienceskaonsS010:Desig=46K+ --> pi- 2muon+Partícules (Física nuclear)PE2_2Violació CP (Física nuclear)0103 physical sciencesKaon decayslepton number violation K meson K meson decay010306 general physicslepton number: violationKaon decays Lepton Number Violationhep-ex010308 nuclear & particles physicsS010:Desig=19CERN SPSK mesonLepton numberK+ --> pi- electron positronKaon Physics; Lepton Flavour Violation; NA62S010.19lcsh:Physicsexperimental results
researchProduct

Search for heavy neutrinos in → Decay

2019

In the present work of the PIENU experiment, heavy neutrinos were sought in pion decays π+→μ+ν at rest by examining the observed muon energy spectrum for extra peaks in addition to the expected peak for a light neutrino. No evidence for heavy neutrinos was observed. Upper limits were set on the neutrino mixing matrix |Uμi|2 in the neutrino mass region of 15.7–33.8 MeV/c$^{2}$, improving on previous results by an order of magnitude.

Physics Letters
researchProduct

Search for heavy neutral lepton production in K+ decays to positrons

2020

A search for heavy neutral lepton ($N$) production in $K^+\to e^+N$ decays using the data sample collected by the NA62 experiment at CERN in 2017--2018 is reported. Upper limits of the extended neutrino mixing matrix element $|U_{e4}|^2$ are established at the level of $10^{-9}$ over most of the accessible heavy neutral lepton mass range 144--462 MeV/$c^2$, with the assumption that the lifetime exceeds 50 ns. These limits improve significantly upon those of previous production and decay searches. The $|U_{e4}|^2$ range favoured by Big Bang Nucleosynthesis is excluded up to a mass of about 340 MeV/$c^2$.

AstrofísicaNuclear and High Energy PhysicsHeavy neutral lepton kaon meson kaon decay positronPontecorvo–Maki–Nakagawa–Sakata matrixSocio-culturaleFOS: Physical sciencesNA62 experiment7. Clean energy01 natural sciencesNA62High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Positronkaon decays heavy neutral lepton SM extensionsPE2_2Big Bang nucleosynthesisSM extensionskaon physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsComputingMilieux_MISCELLANEOUSPhysicsRange (particle radiation)Large Hadron Colliderkaon decays010308 nuclear & particles physicshep-exSettore FIS/04Heavy neutral leptonlepton flavour violationFísicalcsh:QC1-999kaon mesonkaon decaykaon physics; lepton flavour violation; NA62positronProduction (computer science)High Energy Physics::Experimentkaonlcsh:PhysicsParticle Physics - ExperimentLepton
researchProduct

Improved search for heavy neutrinos in the decay π→eν

2018

A search for massive neutrinos has been made in the decay π+→e+ν. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (π→e+νh). Upper limits (90% C.L.) on the neutrino mixing matrix element |Uei|2 in the neutrino mass region 60–135 MeV/c2 were set and are an order of magnitude improvement over previous results.

PhysicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologySpectrum (functional analysis)Pontecorvo–Maki–Nakagawa–Sakata matrix01 natural sciencesSpectral linePositron energyNuclear physicsPion0103 physical sciencesHigh Energy Physics::ExperimentInvariant massNeutrino010306 general physicsOrder of magnitudePhysical Review D
researchProduct

Search for K+→ π+νν¯ at NA62

2018

Flavour physics is one of the most powerful fields for the search of new physics beyond the Standard Model. The kaon sector with the rare decay K+ → π+νν̅ provides one of the cleanest and most promising channels. NA62, a fixed target experiment at the CERN SPS, aims to measure BR (K+ → π+νν̅) with 10% precision to test the Standard Model validity up to an energy scale of hundreds of TeV. NA62 had dedicated data taking for the K+ → π+νν̅ measurement in 2016 and 2017 and will continue in 2018. Here preliminary results on a fraction of 2016 dataset are presented. The analysis of the complete 2016 data sample is expected to achieve the SM sensitivity.

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsPhysics beyond the Standard ModelPhysicsQC1-999Flavour Physicsrare Kaon decays01 natural sciencesMeasure (mathematics)Settore FIS/04 - Fisica Nucleare e SubnucleareStandard ModelPhysics and Astronomy (all)0103 physical sciences010306 general physicsFlavour Physics rare Kaon decays
researchProduct

Search for three body pion decays π+→l+νX

2021

The three body pion decays π+→l+νX(l=e,μ), where X is a weakly interacting neutral boson, were searched for using the full data set from the PIENU experiment. An improved limit on Γ(π+→e+νX)/Γ(π+→μ+νμ) in the mass range 0<mX<120 MeV/c2 and a first result for Γ(π+→μ+νX)/Γ(π+→μ+νμ) in the region 0<mX<33.9 MeV/c2 were obtained. The Majoron-neutrino coupling model was also constrained using the current experimental result of the π+→e+νe(γ) branching ratio.

PhysicsCrystallographyPion010308 nuclear & particles physicsBranching fractionFull dataHigh Energy Physics::Phenomenology0103 physical sciences010306 general physicsCoupling (probability)01 natural sciencesBosonPhysical Review D
researchProduct

Improved search for heavy neutrinos in the decay π→eν

2018

A search for massive neutrinos has been made in the decay π+→e+ν. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (π→e+νh). Upper limits (90% C.L.) on the neutrino mixing matrix element |Uei|2 in the neutrino mass region 60–135 MeV/c2 were set and are an order of magnitude improvement over previous results.

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyHigh Energy Physics::Experiment
researchProduct

NA48/62 latest results

2017

The NA62 experiment at the CERN SPS recorded in 2007 a large sample of K+ ? µ+?µ decays. A peak search in the missing mass spectrum of this decay is performed. In the absence of observed signal, the limits obtained on B(K+ ? µ+?h) and on the mixing matrix element |Uµ 4| are reported. The upgraded NA62 experiment started data taking in 2015. About 5×1011K+ decays have been recorded so far to measure the branching ratio of the K+ ? ?+?? decay. Preliminary results from the K+ ? ?+?? analysis based on about 5% of the 2016 statistics are reported.

Nuclear physicsPhysicsParticle physicsBranching fractionTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYMass spectrumMatrix elementCreative commonsNA62 experimentParticle Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareLarge sample
researchProduct

Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton

2005

Beam-helicity asymmetries for the two-pion-photoproduction reaction gamma + p --> p pi+ pi- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 GeV and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these…

Particle physicsPhotonProtonGeneral Physics and AstronomyFOS: Physical sciences13.60.-r 13.60.Le 13.88.+e[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciencesPhenomenological model[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsBremsstrahlungHelicity3. Good healthPair productionNucleon
researchProduct

Search for heavy neutral lepton production in K+ decays

2018

A search for heavy neutral lepton production in $K^+$ decays using a data sample collected with a minimum bias trigger by the NA62 experiment at CERN in 2015 is reported. Upper limits at the $10^{-7}$ to $10^{-6}$ level are established on the elements of the extended neutrino mixing matrix $|U_{\ell 4}|^2$ ($\ell=e,\mu$) for heavy neutral lepton mass in the range $170-448~{\rm MeV}/c^2$. This improves on the results from previous production searches in $K^+$ decays, setting more stringent limits and extending the mass range.

Nuclear and High Energy PhysicsleptonPontecorvo–Maki–Nakagawa–Sakata matrixheavy neutral leptons neutrino mixingFOS: Physical sciencesk mesonNA62 experiment01 natural sciencesneutrino mixingSettore FIS/04 - Fisica Nucleare e SubnuclearedecayHigh Energy Physics - ExperimentNuclear physicsneutrinoHigh Energy Physics - Experiment (hep-ex)Minimum biasEconomicaBounds; neutrinos; masses; testsTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesheavy neutral leptonslepton k meson decay neutrino010306 general physicsNuclear ExperimentPhysicsRange (particle radiation)Large Hadron Collider010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyAmbientalelcsh:QC1-999High Energy Physics::Experimentlcsh:PhysicsParticle Physics - ExperimentLepton
researchProduct

Helicity dependence of the total inclusive cross section on the deuteron

2009

Abstract A measurement of the helicity dependence of the total inclusive photoabsorption cross section on the deuteron was carried out at MAMI (Mainz) in the energy range 200 E γ 800 MeV . The experiment used a 4 π detection system, a circularly polarized tagged photon beam and a frozen spin target which provided longitudinally polarized deuterons. These new results are a significant improvement on the existing data and allow a detailed comparison with state-of-the-art calculations.

PhysicsAngular momentumRange (particle radiation)Nuclear and High Energy PhysicsNuclear TheoryPolarization (waves)HelicityDeuteron photoabsorptionCharged particleNuclear physicsCross section (physics)DeuteriumPhysics and AstronomyDouble polarization experimentSpin (physics)Nuclear ExperimentPhysics Letters B
researchProduct

Search for Lepton Number and Flavor Violation in K+ and π0 Decays

2021

Searches for the lepton number violating $K^{+} \rightarrow \pi^{-} \mu^{+} e^{+}$ decay and the lepton flavour violating $K^{+} \rightarrow \pi^{+} \mu^{-} e^{+}$ and $\pi^{0} \rightarrow \mu^{-} e^{+}$ decays are reported using data collected by the NA62 experiment at CERN in $2017$-$2018$. No evidence for these decays is found and upper limits of the branching ratios are obtained at 90% confidence level: $\mathcal{B}(K^{+}\rightarrow\pi^{-}\mu^{+}e^{+})<4.2\times 10^{-11}$, $\mathcal{B}(K^{+}\rightarrow\pi^{+}\mu^{-}e^{+})<6.6\times10^{-11}$ and $\mathcal{B}(\pi^{0}\rightarrow\mu^{-}e^{+})<3.2\times 10^{-10}$. These results improve by one order of magnitude over previous results for thes…

PhysicsParticle physics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyFlavourGeneral Physics and Astronomy01 natural sciencesLepton number0103 physical sciencesPiHigh Energy Physics::Experiment010306 general physicsLeptonPhysical Review Letters
researchProduct

Initial results from the PIENU experiment

2017

The pion branching ratio, $R_{\pi } = \frac { {\Gamma }(\pi ^{+} \rightarrow e^{+} \nu _{e} + \pi ^{+}\rightarrow e^{+} \nu _{e} \gamma )}{\Gamma (\pi ^{+} \rightarrow \mu ^{+} \nu _{\mu } + \pi ^{+} \rightarrow \mu ^{+} \nu _{\mu } \gamma )}$ , provides a sensitive test of lepton universality and constraints on many new physics scenarios. The theoretical uncertainty on the Standard Model prediction of R π is 0.02 %, a factor of twenty smaller than the experimental uncertainty. The analysis of a subset of data taken by the PIENU experiment will be presented. The result, R π = (1.2344 ± 0.0023(s t a t) ± 0.0019(s y s t)) ⋅ 10−4 [1], is consistent with the Standard Model prediction and repres…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsBranching fractionPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsNuclear physicsPion0103 physical sciencesHigh Energy Physics::ExperimentPhysical and Theoretical Chemistry010306 general physicsParticle Physics - ExperimentLepton
researchProduct