0000000000115475
AUTHOR
T. Davinson
"Safe" Coulomb excitation of 30Mg.
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient $\gamma$ -spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\gamma$ -ray yields the B(E2; 0$^{+}_{gs} \rightarrow 2^{+}_{1}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$fm$^{4}$. Our result is lower than values obtained at projectile fragmenttion facilities using the intermediate-ene…
The neutron-rich Mg isotopes: first results from MINIBALL at REX-ISOLDE
After the successful commissioning of the Radioactive beam EXperiment (REX) at ISOLDE (CERN) in 2002, first physics experiments were performed in 2003 which focussed on the neutron-rich Mg isotopes in the vicinity of the “island of inversion”. After introducing the REX facility and the modern γ spectrometer MINIBALL first preliminary results will be presented showing the high potential and physics opportunities offered by this new radioactive beam facility.
Simultaneous measurement of β-delayed proton and γ decay of 27P
This is the first study of 27P to measure both the β-delayed proton and β-delayed γ decays. While no new proton groups in the astrophysically interesting energy region of 300–400 keV were observed, a new upper limit on the proton branching of 0.16% was estimated. Several new γ -ray lines were observed, mainly coming from the isobaric analog state in 27Si, which has been assigned a more accurate energy value of 6638(1) keV. peerReviewed
Decay studies in the A∼225 Po-Fr region from the DESPEC campaign at GSI in 2021
The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region. peerReviewed
Shape dynamics in neutron-rich Kr isotopes: Coulomb excitation of 92Kr, 94Kr and 96Kr
We report on the study of excited states in 92,94,96Kr populated via projectile Coulomb excitation at safe energies. The radioactive ion beams at energies of 2.85 MeV/u were delivered by the REX-ISOLDE facility at CERN and impinged on self-supporting 194,196Pt targets. The emitted γ -rays were detected by the Miniball detector-array. A detailed description of the experimental techniques used for extracting diagonal and transitional matrix elements and of the theoretical framework is given. The present experiment reveals the moderate evolution of the collective structure in the considered neutron-rich Kr isotopic chain, which is supported by the interacting boson model combined with the self…
Quasifreeπ+production studied using theC12(γ, π+n)B11reaction in theΔ(1232)resonance region
Results are presented from a coincidence study of the {sup 12}C({gamma},{pi}{sup +}{ital n}){sup 11}B quasifree pion production reaction made in the {Delta}-resonance region using tagged photons. Cross sections for reactions originating on 1{ital p}-shell protons are found to be significantly larger than predicted by calculations based on quasifree pion production. It is suggested that more sophisticated calculations, perhaps including medium effects, may be required to reproduce the data. {copyright} {ital 1996 The American Physical Society.}
The d(9Li,p)10Li reaction as a tool to explore the 10Li structure
The ground and low-lying states of the unbound nucleus 10Li were populated by the 9Li + 2H → 10Li + 1H reaction at 11 AMeV incident energy at the ISAC II facility (TRIUMF). In the experimental setup, the outgoing 9Li at forward angles and the recoil protons at backward angles were detected and identified. This setup allows to study the 10Li emitted in the crucial region at forward angles in the centre of mass.
Nature of seniority symmetry breaking in the semimagic nucleus $^{94}Ru$
Physical review / C 105(3), L031304 (2022). doi:10.1103/PhysRevC.105.L031304
“Safe” Coulomb Excitation ofMg30
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient γ spectrometer MINIBALL. Using Mg-30 ions accelerated to an energy of 2.25 MeV/u together with a thin Ni-nat target, Coulomb excitation of the first excited 2(+) states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation γ-ray yields the B(E2;0(gs)(+)R 2(1)(+)) value of Mg-30 was determined to be 241(31)e(2) fm(4). Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the …
Erratum: Evidence for a Smooth Onset of Deformation in the Neutron-Rich Kr Isotopes [Phys. Rev. Lett.108, 062701 (2012)]
Study of the Ti44(α,p)V47 reaction and implications for core collapse supernovae
The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ -ray observations of the isotope 44 Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44 Ti in supernovae is Ti44(α,p)V47 . Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44 Ti beam at Elab=2.16 MeV/u , corresponding to an energy distribution, for reacting …
The beta-delayed proton and gamma decay of 27P for nuclear astrophysics
The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p, γ) 25Al(β +ν) 25Mg(p, γ) 26Al, but this chain can be by-passed by another chain, 25Al(p, γ) 26Si(p, γ) 27P and it can also be destroyed directly. The reaction 26mAl(p, γ) 27Si∗ is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, throug…
Corrigendum to: “Shape dynamics in neutron-rich Kr isotopes: Coulomb excitation of 92Kr, 94Kr and 96Kr” [Nucl. Phys. A 899 (2013) 1–28]
The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics
The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p,γ)25AI(β+v)25 Mg(p,γ)26Al, but this chain can be by-passed by another chain, 25Al(p, γ)26Si(p, γ)27P and it can also be destroyed directly. The reaction 26m Al (p, γ)27 Si* is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, through the…
Candidate superdeformed band in 28Si
Recent antisymmetrized molecular dynamics (AMD) calculations for 28Si suggest the presence of a superdeformed (SD) band with a dominant 24Mg + α clustering for its configuration, with firm predictions for its location and associated moment of inertia. This motivates a review of the experimental results reported in the literature with a particular focus on 24Mg(α,γ ) studies, as well as on α-like heavy-ion transfer reactions such as 12C(20Ne,α) 28Si. Combining this information for the first time leads to a set of candidate SD states whose properties point to their α-cluster structure and strong associated deformation. Analysis of data from Gammasphere allows the electromagnetic decay of thes…
Proton radioactivity of 117La
A new more precise measurement of the ground-state proton decay of 117La is presented @Ep 5806(5) keV, t1/2,p526(3) ms#. 117La was produced via the p4n fusion-evaporation channel by bombarding a 64Zn target with 310 and 295 MeV 58Ni beams. The proton decay rate is consistent with emission from a prolate deformed 3/21 or 3/22 Nilsson state. No evidence is found for a previously reported proton decay from a high spin isomer in 117La. An upper limit for the production cross section for proton decay of 116La at a bombarding energy of 325 MeV was established. peerReviewed
An innovative Superconducting Recoil Separator for HIE-ISOLDE
International audience; The ISOLDE Scientific Infrastructure at CERN offers a unique range of post-accelerated radioactive beams. The scientific program can be improved with the “Isolde Superconducting Recoil Separator” (ISRS), an innovative spectrometer able to deliver unprecedented (A, Z) resolution. In this paper we present an overview of the physics and ongoing technical developments.
The BRIKEN Project: Extensive Measurements of $\beta $-delayed Neutron Emitters for the Astrophysical r Process
An ambitious program to measure decay properties, primarily β-delayed neutron emission probabilities and half-lives, for a significant number of nuclei near or on the path of the rapid neutron capture process, has been launched at the RIKEN Nishina Center. We give here an overview of the status of the project.
Study of excited states of [sup 31]S through beta-decay of [sup 31]Cl for nucleosynthesis in ONe novae
We have produced an intense and pure beam of 31Cl with the MARS Separator at the Texas A&M University and studied β‐decay of 31Cl by implanting the beam into a novel detector setup, capable of measuring β‐delayed protons and γ‐rays simultaneously. From our data, we have established decay scheme of 31Cl, found resonance energies with 1 keV precision, have measured its half‐life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.
Coulomb Excitation ofCu68,70: First Use of Postaccelerated Isomeric Beams
We report on the first low-energy Coulomb excitation measurements with radioactive Ipi=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon. gamma rays were detected with the MINIBALL spectrometer. The 6- beam was used to study the multiplet of states (3-, 4-, 5-, 6-) arising from the pi2p3/2nu1g9/2 configuration. The 4- state of the multiplet was populated via Coulomb excitation and the B(E2;6--->4-) value was determined in both nuclei. The results obtained illustrate the fragile stability of the Z=28 shell and N=40 subshell closures. A comparison with large-scale shell-model calculations using the 56Ni core…
97/37 Rb 60 : The Cornerstone of the Region of Deformation around A∼100
Excited states of the neutron-rich nuclei 97,99Rb were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of 97Rb as being built on the πg9/2 [431] 3/2+ Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N=60 and rotational bands above. The present study defines the limits of the deformed region around A∼100 and indicates that the deformation of 97Rb is essentially the same as that observed well inside the deformed regi…
Fast-timing Measurement in \(^{96}\)Pd: Improved Accuracy for the Lifetime of the \(4_1^{+}\) State
Direct lifetime measurements via γ–γ coincidences using the FATIMA fast-timing LaBr3(Ce) array were performed for the excited states below previously reported isomers. In the N = 50 semi-magic 96Pd nucleus, lifetimes below the I π = 8+ seniority isomer were addressed as a benchmark for further analysis. The results for the I π = 2+ and 4 + states confirm the published values. Increased accuracy for the lifetime value was achieved for the 4 + state. peerReviewed
β-delayed neutron emission of r-process nuclei at the N = 82 shell closure
This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. O.H, T.D, P.J.W, C.G.B, C.J.G and D.K would like to thank STFC, UK for support. This research was sponsored in part by the Office of Nuclear Physics, U.S. Department of Energy under Award No. DE-FG02-96ER40983 (UTK) and DEAC05-00OR22725 (ORNL), and by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DENA0002132. This work was supported by National Science Foundation under Grants No. PHY-1430152 (JINA Center for the Evolution of the Elements), No. PHY-1565546 (NSCL), and No. PHY-1714153 (Central Michigan Uni…
Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay
In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measu…
Decay Spectroscopy for Nuclear Astrophysics: β-delayed Proton Decay
In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measu…
Very Low Energy Protons From the Beta Decay of Proton Rich Nuclei For Nuclear Astrophysics
The MARS group at TAMU has developed a new experimental technique to measure very low energy protons from β-delayed proton-decay of proton-rich nuclei produced and separated with the MARS recoil spectrometer at TAMU. Recently we have investigated the β-delayed p-decays of 23Al [1], and 31Cl [2], and obtained information on the resonances in the 22Na(p,γ)23Mg and 30P(p,γ) 31S reactions, respectively. These reactions are important in explosive H-burning in Novae [3]. Recently an experiment looking at the β-delayed p-decay of 20Mg was also done in order to obtain information on resonances in the 19Ne(p,γ)20Na reaction. A simple setup consisting of a telescope made of a thin double sided Si str…
Effect of a Triaxial Nuclear Shape on Proton Tunneling: The Decay and Structure of 145Tm
Gamma rays deexciting states in the proton emitter 145Tm were observed using the recoil-decay tagging method. The 145Tm ground-state rotational band was found to exhibit the properties expected for an h{11/2} proton decoupled band. In addition, coincidences between protons feeding the 2{+} state in 144Er and the 2{+}-->0{+} gamma-ray transition were detected, the first measurement of this kind, leading to a more precise value for the 2{+} excitation energy of 329(1) keV. Calculations with the particle-rotor model and the core quasiparticle coupling model indicate that the properties of the pi{11/2} band and the proton-decay rates in 145Tm are consistent with the presence of triaxiality with…
Study of the Ti-44(alpha, p)V-47 reaction and implications for core collapse supernovae
The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ -ray observations of the isotope 44Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44Ti in supernovae is 44Ti(α, p)47V. Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44Ti beam at Elab = 2.16 MeV/u, corresponding to an energy distribution, for reacting α-par…
β-decay of [sup 23]Al and nova nucleosynthesis
We have studied the β‐decay of 23Al with a novel detector setup at the focal plane of the MARS separator at the Texas A&M University to resolve existing controversies about the proton intensities of the IAS in 23Mg and to determine the absolute proton branching ratios by combining our results to the latest γ‐decay data. Experimental technique, results and the relevance for nova nucleosynthesis are discussed.
Recoil Decay Tagging Study Of Transitional Proton Emitters 145,146,147Tm
International audience; Gamma rays from the transitional proton emitting nuclei 145,146,147Tm have been observed using the recoil-decay tagging technique. The ground state band of 147Tm was confirmed and extended and the unfavoured signature sequence was observed. A ground state rotational band with properties of a decoupled h11/2 band was observed in 145Tm. In addition coincidences between the proton fine structure line and the 2+-->0+ gamma-ray transition in 144Er were detected at the focal plane of the FMA. This is the first time that coincidences between proton radioactive decays and gamma rays have been seen. The particle decay of 146Tm has been measured with improved statistics and a …
Study of the Ti44(α,p)V47 reaction and implications for core collapse supernovae
The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ-ray observations of the isotope 44Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44Ti in supernovae is Ti44(α,p)V47. Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44Ti beam at Elab = 2.16MeV/u, corresponding to an energy distribution, for reacting α-partic…