0000000000115480
AUTHOR
B. Jonson
"Safe" Coulomb excitation of 30Mg.
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient $\gamma$ -spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\gamma$ -ray yields the B(E2; 0$^{+}_{gs} \rightarrow 2^{+}_{1}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$fm$^{4}$. Our result is lower than values obtained at projectile fragmenttion facilities using the intermediate-ene…
First Accurate Normalization of the $\beta$-delayed $\alpha$ Decay of $^{16}$N and Implications for the $^{12}$C$(\alpha,\gamma)^{16}$O Astrophysical Reaction Rate
The $^{12}\text{C}(\alpha,\gamma){}^{16}\text{O}$ reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced $\alpha$ width, $\gamma_{11}$, of the bound $1^-$ level in $^{16}$O is particularly important to determine the cross section. The magnitude of $\gamma_{11}$ is determined via sub-Coulomb $\alpha$-transfer reactions or the $\beta$-delayed $\alpha$ decay of $^{16}$N, but the latter approach is presently hampered by the lack of sufficiently precise data on the $\beta$-decay branching ratios. Here we report improved branching ratios for the bound $1^-$ level [$b_{\beta…
Clarification of the Three-Body Decay of 12C (12.71 MeV)
Using β decays of a clean source of 12 N produced at the IGISOL facility, we have measured the breakup of the 12 C (12.71 MeV) state into three α particles with a segmented particle detector setup. The high quality of the data permits solving the question of the breakup mechanism of the 12.71 MeV state, a longstanding problem in few-body nuclear physics. Among existing models, a modified sequential model fits the data best, but systematic deviations indicate that a three-body description is needed. peerReviewed
Relative proton and γ widths of astrophysically important states in 30S studied in the β-delayed decay of 31Ar
Resonances just above the proton threshold in 30S affect the 29P(p,gamma)30S reaction under astrophysical conditions. The (p,gamma)-reaction rate is currently determined indirectly and depends on the properties of the relevant resonances. We present here a method for finding the ratio between the proton and gamma partial widths of resonances in 30S. The widths are determined from the beta-2p and beta-p-gamma decay of 31Ar, which is produced at the ISOLDE facility at the European research organization CERN. Experimental limits on the ratio between the proton and gamma partial widths for astrophysical relevant levels in 30S have been found for the first time. A level at 4688(5) keV is identif…
Multiparticle emission in the decay of Ar 31
A multihit capacity setup was used to study the decay of the dripline nucleus 31Ar, produced at the ISOLDE facility at CERN. A spectroscopic analysis of the β-delayed three-proton decay of 31Ar is presented for the first time together with a quantitative analysis of the β-delayed 2pγ decay. A new method for determination of the spin of low-lying levels in the βp daughter 30S using proton-proton angular correlations is presented and used to determine that the spin of the 5.2-MeV level is most likely 3+ with 4+ also possible. The half-life of 31Ar is found to be 15.1(3) ms. An improved analysis of the Fermi β strength including the β3p-decay mode gives a total measured branching ratio of 3.60…
An innovative Superconducting Recoil Separator for HIE-ISOLDE
International audience; The ISOLDE Scientific Infrastructure at CERN offers a unique range of post-accelerated radioactive beams. The scientific program can be improved with the “Isolde Superconducting Recoil Separator” (ISRS), an innovative spectrometer able to deliver unprecedented (A, Z) resolution. In this paper we present an overview of the physics and ongoing technical developments.
Proton dripline studies at ISOLDE: 31Ar and 9C
In this contribution examples of the application of new technologies to disentangle the mechanism of beta-delayed multiparticle emission are given. In particular the mechanism of β-delayed two-proton emission from 31Ar has be resolved and proved to be sequential, a preview of 9C-decay data is discussed. peerReviewed
Crossing the Dripline to 11N Using Elastic Resonance Scattering
The level structure of the unbound nucleus 11N has been studied by 10C+p elastic resonance scattering in inverse geometry with the LISE3 spectrometer at GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement was done at the A1200 spectrometer at MSU. The excitation function above the 10C+p threshold has been determined up to 5 MeV. A potential-model analysis revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44 +-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV, (Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and 5/2+, respectively. Hence, 11N is shown to have a ground state parity inversi…
Multi-particle emission in the decay of $^{31}$Ar
A multi-hit capacity setup was used to study the decay of the dripline nucleus 31Ar, produced at the ISOLDE facility at CERN. A spectroscopic analysis of the beta-delayed three-proton decay of 31Ar is presented for the first time together with a quantitative analysis of the beta-delayed two-proton-gamma-decay. A new method for determination of the spin of low-lying levels in the beta-proton-daughter 30S using proton-proton angular correlations is presented and used for the level at 5.2 MeV, which is found to be either a 3+ or 4+ level, with the data pointing towards the 3+. The half-life of 31Ar is found to be 15.1(3) ms. An improved analysis of the Fermi beta-strength gives a total measure…
Dissociation of 8He into 6He + n + X at 240 MeV/u
4 pages, 3 figures, 2 tables.
First Accurate Normalization of the β-delayed α Decay of ^{16}N and Implications for the ^{12}C(α,γ)^{16}O Astrophysical Reaction Rate.
The ^{12}C(α,γ)^{16}O reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ_{11}, of the bound 1^{-} level in ^{16}O is particularly important to determine the cross section. The magnitude of γ_{11} is determined via sub-Coulomb α-transfer reactions or the β-delayed α decay of ^{16}N, but the latter approach is presently hampered by the lack of sufficiently precise data on the β-decay branching ratios. Here we report improved branching ratios for the bound 1^{-} level [b_{β,11}=(5.02±0.10)×10^{-2}] and for β-delayed α emission [b_{βα}=(1.59±0.06)×10^{-5}].…
First Accurate Normalization of the beta-delayed alpha Decay of N-16 and Implications for the C-12(alpha,gamma)O-16 Astrophysical Reaction Rate
6 pags., 4 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0
Unveiling the two-proton halo character of 17Ne: Exclusive measurement of quasi-free proton-knockout reactions
7 pags., 5 figs.