6533b7d1fe1ef96bd125c88e
RESEARCH PRODUCT
First Accurate Normalization of the $\beta$-delayed $\alpha$ Decay of $^{16}$N and Implications for the $^{12}$C$(\alpha,\gamma)^{16}$O Astrophysical Reaction Rate
O. S. KirsebomO. TengbladR. LicaM. MunchK. RiisagerH. O. U. FynboM. J. G. BorgeM. MadurgaI. MarroquinA. N. AndreyevT. A. BerryE. R. ChristensenP. Díaz FernándezD. T. DohertyP. Van DuppenL. M. FraileM. C. GallardoP. T. GreenleesL. J. Harkness-brennanN. HubbardM. HuyseJ. H. JensenH. JohanssonB. JonsonD. S. JudsonJ. KonkiI. LazarusM. V. LundN. MargineanR. MargineanA. PereaC. MihaiA. NegretR. D. PageV. PucknellP. RahkilaO. SorlinC. SottyJ. A. SwartzH. B. SørensenH. TörnqvistV. VediaN. WarrH. De Wittesubject
ddc:530Nuclear Physics - Experiment[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex][PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear ExperimentNuclear Physicsdescription
The $^{12}\text{C}(\alpha,\gamma){}^{16}\text{O}$ reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced $\alpha$ width, $\gamma_{11}$, of the bound $1^-$ level in $^{16}$O is particularly important to determine the cross section. The magnitude of $\gamma_{11}$ is determined via sub-Coulomb $\alpha$-transfer reactions or the $\beta$-delayed $\alpha$ decay of $^{16}$N, but the latter approach is presently hampered by the lack of sufficiently precise data on the $\beta$-decay branching ratios. Here we report improved branching ratios for the bound $1^-$ level [$b_{\beta,11} = (5.02\pm 0.10)\times 10^{-2}$] and for $\beta$-delayed $\alpha$ emission [$b_{\beta\alpha} = (1.59\pm 0.06)\times 10^{-5}$]. Our value for $b_{\beta\alpha}$ is 33% larger than previously held, leading to a substantial increase in $\gamma_{11}$. Our revised value for $\gamma_{11}$ is in good agreement with the value obtained in $\alpha$-transfer studies and the weighted average of the two gives a robust and precise determination of $\gamma_{11}$, which provides significantly improved constraints on the $^{12}$C$(\alpha,\gamma)$ cross section in the energy range relevant to hydrostatic He burning.
year | journal | country | edition | language |
---|---|---|---|---|
2018-04-05 |