0000000000145833

AUTHOR

N. Hubbard

showing 7 related works from this author

First Accurate Normalization of the $\beta$-delayed $\alpha$ Decay of $^{16}$N and Implications for the $^{12}$C$(\alpha,\gamma)^{16}$O Astrophysical…

2018

The $^{12}\text{C}(\alpha,\gamma){}^{16}\text{O}$ reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced $\alpha$ width, $\gamma_{11}$, of the bound $1^-$ level in $^{16}$O is particularly important to determine the cross section. The magnitude of $\gamma_{11}$ is determined via sub-Coulomb $\alpha$-transfer reactions or the $\beta$-delayed $\alpha$ decay of $^{16}$N, but the latter approach is presently hampered by the lack of sufficiently precise data on the $\beta$-decay branching ratios. Here we report improved branching ratios for the bound $1^-$ level [$b_{\beta…

ddc:530Nuclear Physics - Experiment[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex][PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear ExperimentNuclear Physics
researchProduct

Decay studies in the A∼225 Po-Fr region from the DESPEC campaign at GSI in 2021

2022

The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region. peerReviewed

ydinfysiikka
researchProduct

First Accurate Normalization of the β -delayed α Decay of N16 and Implications for the C12(α,γ)O16 Astrophysical Reaction Rate

2018

The C-12(alpha,gamma)O-16 reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced a width, gamma(11), of the bound 1(-) level in O-16 is particularly important to determine the cross section. The magnitude of gamma(11) is determined via sub-Coulomb a-transfer reactions or the beta-delayed a decay of N-16, but the latter approach is presently hampered by the lack of sufficiently precise data on the beta-decay branching ratios. Here we report improved branching ratios for the bound 1(-) level [b(beta,11) = (5.02 +/- 0.10) x 10(-2)] and for beta-delayed alpha emission [b(…

PhysicsNuclear reactionNuclear physicsReaction rateNormalization (statistics)Light nucleus010308 nuclear & particles physicsBranching fraction0103 physical sciencesGeneral Physics and AstronomyAlpha decay010306 general physics01 natural sciencesPhysical Review Letters
researchProduct

Nature of seniority symmetry breaking in the semimagic nucleus $^{94}Ru$

2022

Physical review / C 105(3), L031304 (2022). doi:10.1103/PhysRevC.105.L031304

Nuclear Theoryddc:530Nuclear Experimentydinfysiikka530
researchProduct

First Accurate Normalization of the β-delayed α Decay of ^{16}N and Implications for the ^{12}C(α,γ)^{16}O Astrophysical Reaction Rate.

2018

The ^{12}C(α,γ)^{16}O reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ_{11}, of the bound 1^{-} level in ^{16}O is particularly important to determine the cross section. The magnitude of γ_{11} is determined via sub-Coulomb α-transfer reactions or the β-delayed α decay of ^{16}N, but the latter approach is presently hampered by the lack of sufficiently precise data on the β-decay branching ratios. Here we report improved branching ratios for the bound 1^{-} level [b_{β,11}=(5.02±0.10)×10^{-2}] and for β-delayed α emission [b_{βα}=(1.59±0.06)×10^{-5}].…

astrofysiikkaydinfysiikkabeta-delayed alpha decayPhysical review letters
researchProduct

Fast-timing Measurement in \(^{96}\)Pd: Improved Accuracy for the Lifetime of the \(4_1^{+}\) State

2023

Direct lifetime measurements via γ–γ coincidences using the FATIMA fast-timing LaBr3(Ce) array were performed for the excited states below previously reported isomers. In the N = 50 semi-magic 96Pd nucleus, lifetimes below the I π = 8+ seniority isomer were addressed as a benchmark for further analysis. The results for the I π = 2+ and 4 + states confirm the published values. Increased accuracy for the lifetime value was achieved for the 4 + state. peerReviewed

General Physics and AstronomyydinfysiikkaActa Physica Polonica B Proceedings Supplement
researchProduct

First Accurate Normalization of the beta-delayed alpha Decay of N-16 and Implications for the C-12(alpha,gamma)O-16 Astrophysical Reaction Rate

2018

6 pags., 4 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

ENERGY-LEVELSLIGHT-NUCLEILEVELBRANCHING RATIOO-16CROSS-SECTIONMATRIX114 Physical sciencesSTATE
researchProduct