0000000000115515

AUTHOR

Tony Ivanov

Robust optical readout and characterization of nuclear spin transitions in nitrogen-vacancy ensembles in diamond

Nuclear spin ensembles in diamond are promising candidates for quantum sensing applications, including rotation sensing. Here we perform a characterization of the optically detected nuclear-spin transitions associated with the 14N nuclear spin within diamond nitrogen vacancy (NV) centers. We observe nuclear-spin-dependent fluorescence with the contrast of optically detected 14N nuclear Rabi oscillations comparable to that of the NV electron spin. Using Ramsey spectroscopy, we investigate the temperature and magnetic-field dependence of the nuclear spin transitions in the 77.5-420 K and 350-675 G range, respectively. The nuclear quadrupole coupling constant Q was found to vary with temperatu…

research product

Prospects of SPIN Gyroscopes Based on Nitrogen-Vacancy Centers in Diamond

This project aims to develop solid-state gyroscopes based on ensembles of negatively charged nitrogen-vacancy (NV) centers in diamond [1], [2]. The NV center is a defect formed in diamond by one substitutional nitrogen atom and an adjacent vacancy. The NV- center features a ground state with electronic spin $\mathrm{S}=1$ , which can be initialized, manipulated, and detected via convenient optical, microwave and radiofrequency transitions (Fig. 1). Nuclear spins are appealing in the context of gyroscopes because they have much smaller gyromagnetic ratios than that of the electron (by a factor of about 1000), reducing the requirements on static magnetic-field stability and homogeneity. The l…

research product

Demonstration of diamond nuclear spin gyroscope

Description

research product