0000000000115818

AUTHOR

Daniel A. Perley

GRB 101225A - a new class of GRBs?

AbstractThe Christmas burst, GRB 101225A, was one of the most controversial bursts in the last few years. Its exceptionally long duration but bright X-ray emission showing a thermal component followed by a strange afterglow with a thermal SED lead to two different interpretations. We present here our model ascribing this strange event to a new type of GRB progenitor consisting of a neutron star and an evolved main-sequence star in a very faint galaxy at redshift 0.33 while Campana et al. (2011) proposed a Galactic origin. New observations at several wavelengths might resolve the question between the two models in the near future.

research product

Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of LGRBs

Aims: Long gamma-ray bursts (LGRBs) are associated with massive stars and are therefore linked to star formation. However, the conditions needed for the progenitor stars to produce LGRBs can affect the relation between the LGRB rate and star formation. By using the power of a complete LGRB sample, our long-term aim is to understand whether such a bias exists and, if it does, what its origin is. Methods: To reach our goal we use the Swift/BAT6 complete sample of LGRBs. In this first paper, we build the spectral energy distribution (SED) of the 14 z ⋆) from SED fitting. To investigate the presence of a bias in the LGRB-star formation relation we compare the stellar mass distribution of the LG…

research product

The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33

Long Gamma-Ray Bursts (GRBs) are the most dramatic examples of massive stellar deaths, usually associated with supernovae. They release ultra-relativistic jets producing non-thermal emission through synchrotron radiation as they interact with the surrounding medium. Here we report observations of the peculiar GRB 101225A (the "Christmas burst"). Its gamma-ray emission was exceptionally long and followed by a bright X-ray transient with a hot thermal component and an unusual optical couuterpart. During the first 10 days, the optical emission evolved as an expanding, cooling blackbody after which an additional component, consistent with a faint supernova, emerged. We determine its distance to…

research product