0000000000115999
AUTHOR
Adam S. Foster
The weight function for charges - A rigorous theoretical concept for Kelvin probe force microscopy
A comprehensive discussion of the physical origins of Kelvin probe force microscopy (KPFM) signals for charged systems is given. We extend the existing descriptions by including the openloop operation mode, which is relevant when performing KPFM in electrolyte solutions. We define the contribution of charges to the KPFM signal by a weight function, which depends on the electric potential and on the capacitance of the tip-sample system. We analyze the sign as well as the lateral decay of this weight function for different sample types, namely, conductive samples as well as dielectric samples with permittivities both larger and smaller than the permittivity of the surrounding medium. Dependin…
Impact of the reaction pathway on the final product in on-surface synthesis
International audience; On-surface synthesis provides a very promising strategy for creating stable functional structures on surfaces. In the past, classical reactions known from solution synthesis have been successfully transferred onto a surface. Due to the presence of the surface, on-surface synthesis provides the potential of directing the reaction pathway in a manner that might not be accessible in classical solution synthesis. In this work, we present evidence for an acetylene polymerization from a terminal alkyne monomer deposited onto calcite (10.4). Strikingly, although the dimer forms on the surface as well, we find no indication for diacetylene polymerization. This is in sharp co…
Chemical Identification at the Solid–Liquid Interface
Solid-liquid interfaces are decisive for a wide range of natural and technological processes, including fields as diverse as geochemistry and environmental science as well as catalysis and corrosion protection. Dynamic atomic force microscopy nowadays provides unparalleled structural insights into solid-liquid interfaces, including the solvation structure above the surface. In contrast, chemical identification of individual interfacial atoms still remains a considerable challenge. So far, an identification of chemically alike atoms in a surface alloy has only been demonstrated under well-controlled ultrahigh vacuum conditions. In liquids, the recent advent of three-dimensional force mapping…
Diacetylene polymerization on a bulk insulator surface
| openaire: EC/FP7/610446/EU//PAMS Molecular electronics has great potential to surpass known limitations in conventional silicon-based technologies. The development of molecular electronics devices requires reliable strategies for connecting functional molecules by wire-like structures. To this end, diacetylene polymerization has been discussed as a very promising approach for contacting single molecules with a conductive polymer chain. A major challenge for future device fabrication is transferring this method to bulk insulator surfaces, which are mandatory to decouple the electronic structure of the functional molecules from the support surface. Here, we provide experimental evidence for…
Three-dimensional solvation structure of ethanol on carbonate minerals
Calcite and magnesite are important mineral constituents of the earth’s crust. In aqueous environments, these carbonates typically expose their most stable cleavage plane, the (10.4) surface. It is known that these surfaces interact with a large variety of organic molecules, which can result in surface restructuring. This process is decisive for the formation of biominerals. With the development of 3D atomic force microscopy (AFM) it is now possible to image solid–liquid interfaces with unprecedented molecular resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol – an o…
Deposition order controls the first stages of a metal-organic coordination network on an insulator surface
| openaire: EC/FP7/610446/EU//PAMS We report on first stages toward the formation of a surface-confined metal-organic coordination network (MOCN) by sequential deposition of biphenyl-4,4′-dicarboxylic acid and iron atoms on the surface of a bulk insulator, calcite (10.4). The influence of the deposition order on the structure formation is studied by noncontact atomic force microscopy operated in ultrahigh vacuum at room temperature. It is found that sequential deposition facilitates MOCN formation when the organic linker molecules are first adsorbed on the surface, followed by iron deposition. This observation is explained by first-principles computations, indicating that the metal-molecule…
Diacetylene Linked Anthracene Oligomers Synthesized by One-Shot Homocoupling of Trimethylsilyl on Cu(111)
On-surface chemical reaction has become a very powerful technique to conjugate small precursor molecules and several reactions have been proposed with the aim to fabricate functional nanostructures on surfaces. Here we present an unforeseen adsorption mode of 9,10-bis-((trimethylsilyl)ethynyl)anthracene on a Cu(111)surface and the resulting one-shot desilylative homocoupling of of the adsorbate by annealing at 400 K. With a combination of high-resolution atomic force microscopy and density functional theory calculations, we found that the triple bonds and silicon atoms of the monomer chemically interact with the copper surface. After the oligomerization, we discovered that the anthracene un…
Control of Molecular Orbital Ordering Using a van der Waals Monolayer Ferroelectric
Two-dimensional (2D) ferroelectric materials provide a promising platform for the electrical control of quantum states. In particular, due to their 2D nature, they are suitable for influencing the quantum states of deposited molecules via the proximity effect. Here, we report electrically controllable molecular states in phthalocyanine molecules adsorbed on monolayer ferroelectric material SnTe. In particular, we demonstrate that the strain and ferroelectric order in SnTe creates a transition between two distinct orbital orders in the adsorbed phthalocyanine molecules. By controlling the polarization of the ferroelectric domain using scanning tunneling microscopy (STM), we have successfully…
Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality
As recent experiments demonstrate, the inner shells of multiwalled carbon nanotubes are more sensitive to electron irradiation than the outer shells. To understand the origin of such counterintuitive behavior, we employ a density-functional-theory based tight-binding method and calculate the displacement threshold energies for carbon atoms in single-walled nanotubes with different diameters and chiralities. We show that the displacement energy and the defect production rate strongly depend on the diameter of the nanotube and its chirality, with the displacement energy being lower, but saturating towards the value for graphite when the tube diameter increases. This implies that the threshold…