0000000000116259
AUTHOR
Fiona Doetsch
Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain.
The adult mammalian subventricular zone (SVZ) contains stem cells that give rise to neurons and glia.In vivo, SVZ progeny migrate 3–8 mm to the olfactory bulb, where they form neurons. We show here that the SVZ of the lateral wall of the lateral ventricles in adult mice is composed of neuroblasts, glial cells, and a novel putative precursor cell. The topographical organization of these cells suggests how neurogenesis and migration are integrated in this region. Type A cells had the ultrastructure of migrating neuronal precursors. These cells were arranged as chains parallel to the walls of the ventricle and were polysialylated neural adhesion cell molecule- (PSA–NCAM), TuJ1- (β-tubulin), an…
A Specialized Vascular Niche for Adult Neural Stem Cells
SummaryStem cells reside in specialized niches that regulate their self-renewal and differentiation. The vasculature is emerging as an important component of stem cell niches. Here, we show that the adult subventricular zone (SVZ) neural stem cell niche contains an extensive planar vascular plexus that has specialized properties. Dividing stem cells and their transit-amplifying progeny are tightly apposed to SVZ blood vessels both during homeostasis and regeneration. They frequently contact the vasculature at sites that lack astrocyte endfeet and pericyte coverage, a modification of the blood-brain barrier unique to the SVZ. Moreover, regeneration often occurs at these sites. Finally, we fi…
Multipotent Neural Stem Cells Reside into the Rostral Extension and Olfactory Bulb of Adult Rodents
The lateral walls of the forebrain lateral ventricles are the richest source of stem cells in the adult mammalian brain. These stem cells give rise to new olfactory neurons that are renewed throughout life. The neurons originate in the subventricular zone (SVZ), migrate within the rostral extension (RE) of the SVZ along the rostral migratory stream (RMS) within tube-like structures formed of glial cells, to eventually reach the olfactory bulb (OB). We demonstrate that, contrary to the current view, multipotential (neuronal-astroglial-oligodendroglial) precursors with stem cell features can be isolated not only from the SVZ but also from the entire RE, including the distal portion within the…
EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells.
AbstractNeural stem cells in the subventricular zone (SVZ) continue to generate new neurons in the adult brain. SVZ cells exposed to EGF in culture grow to form neurospheres that are multipotent and self-renewing. We show here that the majority of these EGF-responsive cells are not derived from relatively quiescent stem cells in vivo, but from the highly mitotic, Dlx2+, transit-amplifying C cells. When exposed to EGF, C cells downregulate Dlx2, arrest neuronal production, and become highly proliferative and invasive. Killing Dlx2+ cells dramatically reduces the in vivo response to EGF and neurosphere formation in vitro. Furthermore, purified C cells are 53-fold enriched for neurosphere gene…
Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone.
The subventricular zone (SVZ) of the lateral ventricles, the largest remaining germinal zone of the adult mammalian brain, contains an extensive network of neuroblasts migrating rostrally to the olfactory bulb. Little is known about the endogenous proliferation signals for SVZ neural stem cells or guidance cues along the migration pathway. Here we show that the receptor tyrosine kinases EphB1-3 and EphA4 and their transmembrane ligands, ephrins-B2/3, are expressed by cells of the SVZ. Electron microscopy revealed ephrin-B ligands associated with SVZ astrocytes, which function as stem cells in this germinal zone. A three-day infusion of the ectodomain of either EphB2 or ephrin-B2 into the la…
Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain
AbstractNeural stem cells reside in the subventricular zone (SVZ) of the adult mammalian brain. This germinal region, which continually generates new neurons destined for the olfactory bulb, is composed of four cell types: migrating neuroblasts, immature precursors, astrocytes, and ependymal cells. Here we show that SVZ astrocytes, and not ependymal cells, remain labeled with proliferation markers after long survivals in adult mice. After elimination of immature precursors and neuroblasts by an antimitotic treatment, SVZ astrocytes divide to generate immature precursors and neuroblasts. Furthermore, in untreated mice, SVZ astrocytes specifically infected with a retrovirus give rise to new n…
Lack of the Cell-Cycle Inhibitor p27Kip1 Results in Selective Increase of Transit-Amplifying Cells for Adult Neurogenesis
The subventricular zone (SVZ) is the largest germinal layer in the adult mammalian brain and comprises stem cells, transit-amplifying progenitors, and committed neuroblasts. Although the SVZ contains the highest concentration of dividing cells in the adult brain, the intracellular mechanisms controlling their proliferation have not been elucidated. We show here that loss of the cyclin-dependent kinase inhibitor p27Kip1 has very specific effects on a population of CNS progenitors responsible for adult neurogenesis. Using bromodeoxyuridine and [3H]thymidine incorporation to label cells in S phase and cell-specific markers and electron microscopy to identify distinct cell types, we compared th…
Architecture and cell types of the adult subventricular zone: in search of the stem cells.
Neural stem cells are maintained in the subventricular zone (SVZ) of the adult mammalian brain. Here, we review the cellular organization of this germinal layer and propose lineage relationships of the three main cell types found in this area. The majority of cells in the adult SVZ are migrating neuroblasts (type A cells) that continue to proliferate. These cells form an extensive network of tangentially oriented pathways throughout the lateral wall of the lateral ventricle. Type A cells move long distances through this network at high speeds by means of chain migration. Cells in the SVZ network enter the rostral migratory stream (RMS) and migrate anteriorly into the olfactory bulb, where t…