0000000000116279

AUTHOR

Zoran D. Grujić

showing 16 related works from this author

Johnson-Nyquist Noise Effects in Neutron Electric-Dipole-Moment Experiments

2021

Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We present here the first dedicated study on JNN applied to a large-scale long-measurement-time experiment with the implementation of a co-magnetometry. In this study, we derive surface- and volume-averaged root-mean-square normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and three-dimensional spatial dependencies of JNN. The c…

noiseNeutron electric dipole momentMagnetometerAtomic Physics (physics.atom-ph)FOS: Physical sciencesNeutron Physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNoise (electronics)010305 fluids & plasmaslaw.inventionPhysics - Atomic PhysicslawElectric field0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicshigh-precision experimentsprecision measurementJohnson–Nyquist noiseAtomic and molecular structure and dynamics[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Computational physicsDipoleNuclear Spin ResonanceAmplitudeElectromagnetic Field Calculations
researchProduct

Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment

2020

An array of 16 laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiment's magnetic field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors' construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic-field readout. We present two app…

experimental methodsAtomic Physics (physics.atom-ph)EXPERIMENTAL LIMITPhysics Atomic Molecular & Chemicalnucl-ex01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)n: spinNuclear ExperimentPhysicsn: electric momentPhysicsincluding interactions with strong fields and short pulsesMagnetic fieldAtomic and molecular processes in external fieldsPhysical SciencesParticle Physics - ExperimentNeutron electric dipole momentMagnetometerOther Fields of PhysicsFOS: Physical sciencesmagnetic field: gradient[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]physics.atom-phOptics0103 physical sciencesNeutronNuclear Physics - ExperimentSensitivity (control systems)010306 general physicsDiodeScience & Technology010308 nuclear & particles physicsbusiness.industryhep-exScalar (physics)OpticssensitivityLaser[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]laserfield strengthtime dependencebusinessexperimental results
researchProduct

Analysis method for detecting topological defect dark matter with a global magnetometer network

2019

Abstract The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of time-synchronized, geographically separated, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work presents a data analysis procedure to search for axion dark matter in the form of topological defects: specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain wall crossing the Earth creates a distinctive signal pattern in the network that can be d…

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)Spins010308 nuclear & particles physicsMagnetometerDark matterFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesTopological defectlaw.inventionDomain wall (string theory)Space and Planetary Sciencelaw0103 physical sciencesAstrophysics - Instrumentation and Methods for Astrophysics010303 astronomy & astrophysicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)GnomeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Data Blinding for the nEDM Experiment at PSI

2020

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it …

Nuclear and High Energy Physicsdata analysis methodPhysics - Instrumentation and DetectorsOffset (computer science)BlindingNeutron electric dipole momentOther Fields of PhysicsFOS: Physical sciencesSeparate analysis[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesHigh Energy Physics - Experimentphysics.data-anHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear Experimentphysics.ins-detPhysicsn: electric moment010308 nuclear & particles physicshep-exProbability and statisticsInstrumentation and Detectors (physics.ins-det)Data setSpecial Article - New Tools and TechniquesTrustworthinessPhysics - Data Analysis Statistics and ProbabilityAlgorithmData Analysis Statistics and Probability (physics.data-an)Particle Physics - Experiment[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]
researchProduct

Measurement of the permanent electric dipole moment of the neutron

2020

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magne…

Physics - Instrumentation and DetectorsMagnetometerFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesMeasure (mathematics)S017EDMlaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysislawcesium0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]time reversal: invarianceStatistical analysisNeutronNuclear Physics - ExperimentPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsn: electric momentInstrumentation and Detectors (physics.ins-det)Cesium vaporMagnetic fieldElectric dipole moment* Automatic Keywords *Ultracold neutronsElementary Particles and FieldshistoryAtomic physicstime reversal: violationmagnetic field: oscillationParticle Physics - Experiment
researchProduct

Characterization of the global network of optical magnetometers to search for exotic physics (GNOME)

2018

The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the network's operation (e.g., data acquisition, format, storage, and diagnostics) are described. Charac…

PhysicsQuantum PhysicsPhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsMagnetometerBandwidth (signal processing)FOS: Physical sciencesAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)01 natural sciencesPhysics - Atomic Physicslaw.inventionStarsData acquisitionSpace and Planetary Sciencelaw0103 physical sciencesGlobal networkQuantum Physics (quant-ph)010306 general physicsAxionTransient signalGnomeRemote sensingPhysics of the Dark Universe
researchProduct

Constraining interactions mediated by axion-like particles with ultracold neutrons

2015

We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and Hg199 atoms confined in the same volume. The measurement was performed in a ~1μT vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence o…

Nuclear and High Energy PhysicsNeutron magnetic momentNeutron electric dipole momentFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsPHYSICSHigh Energy Physics - Experiment (hep-ex)Complementary experimentsHigh Energy Physics - Phenomenology (hep-ph)AxionMOMENTS[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]SEARCH0103 physical sciencesAxion-like particleultracold neutronsNeutron010306 general physicsCoupling constantLarmor precessionPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsNeutron electric dipole moment[SPI.PLASMA]Engineering Sciences [physics]/Plasmaslcsh:QC1-999neutron electric dipole momentShort range spin-dependent interactionElectric dipole momentHigh Energy Physics - PhenomenologyCP violationaxion-like particleaxionUltracold neutronsshort range spin-dependent interactionFORCESUltracold neutronsCP violation; Short range spin-dependent interaction; Axion; Axion-like particle; Ultracold neutrons; Neutron electric dipole momentlcsh:Physics
researchProduct

Statistical sensitivity of the nEDM apparatus at PSI to n − n′ oscillations

2018

The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could spontaneously mix in a process much faster than the neutron β-decay. Two groups have performed a series of experiments in search of neutron – mirror-neutron (n − n′) oscillations. They reported no evidence, thereby setting stringent limits on the oscillation time τnn′. Later, these data sets have been further analyzed by Berezhiani et al.(2009–2017), and signals, compatible with n − n′ oscillations in the presence of mirror magnetic fields, have been reported. The Neutron Electric Dipole Moment Collaboration based at the Paul Scherrer Institute performed a new series of experiments to further test…

Neutron electric dipole momentQC1-999magnetic field[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesmirror particle0103 physical sciencesoverlapNeutronSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicssterileoscillation: timePhysicsn: electric momentSeries (mathematics)010308 nuclear & particles physicsOscillationPhysicsDegenerate energy levelssensitivityMagnetic fieldComputational physicsNeutron sourcestatisticalperformance
researchProduct

Gravitational depolarization of ultracold neutrons : comparison with data

2015

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsField (physics)FOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsGravitationHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronDetectors and Experimental Techniques010306 general physicsQCLarmor precessionPhysics010308 nuclear & particles physics1420DhDepolarizationInstrumentation and Detectors (physics.ins-det)Magnetic field gradient1130Ernumbers: 1340Em0755GeElectric dipole momentPhysics::Space PhysicsUltracold neutronsAtomic physics
researchProduct

The n2EDM experiment at the Paul Scherrer Institute

2018

We present the new spectrometer for the neutron electric dipole moment (nEDM) search at the Paul Scherrer Institute (PSI), called n2EDM. The setup is at room temperature in vacuum using ultracold neutrons. n2EDM features a large UCN double storage chamber design with neutron transport adapted to the PSI UCN source. The design builds on experience gained from the previous apparatus operated at PSI until 2017. An order of magnitude increase in sensitivity is calculated for the new baseline setup based on scalable results from the previous apparatus, and the UCN source performance achieved in 2016.

Neutron transportPhysics - Instrumentation and DetectorsNeutron electric dipole momentPhysics::Instrumentation and DetectorsQC1-999FOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Chamber design0103 physical sciencesNeutronspectrometer: design[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsn: electric momentSpectrometer010308 nuclear & particles physicsPhysicsInstrumentation and Detectors (physics.ins-det)sensitivityMeasuring instrumentUltracold neutronsNucleonperformanceInternational Workshop on Particle Physics at Neutron Sources 2018, May 2018, Grenoble, France
researchProduct

A measurement of the neutron to 199Hg magnetic moment ratio

2014

The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30).

inorganic chemicalsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutron magnetic momentAtomic Physics (physics.atom-ph)Astrophysics::High Energy Astrophysical PhenomenaGyromagnetic ratioFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesPhysics - Atomic PhysicsNuclear physicsMagnetic momentGyromagnetic ratio0103 physical sciencesAtomNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physics::Atomic PhysicsNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsCondensed Matter::Quantum Gases[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Magnetic moment010308 nuclear & particles physicsProton magnetic momenttechnology industry and agricultureQC0793Instrumentation and Detectors (physics.ins-det)Ultracold neutrons; Mercury atoms; Magnetic moment; Gyromagnetic ratioQC0770lcsh:QC1-999Mercury atomsElectric dipole momentbiological sciencesUltracold neutronslipids (amino acids peptides and proteins)Astrophysics::Earth and Planetary AstrophysicsAtomic physicsUltracold neutronslcsh:PhysicsPhysics Letters B
researchProduct

Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

2014

The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5m x 2.5m x 3m disturbances of the magnetic field are attenuated by factors of 5 to 50 at a bandwidth from $10^{-3}$ Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the nEDM measurement. These shielding factors apply to random environmental noise f…

Physics - Instrumentation and DetectorsNeutron electric dipole momentAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyShields[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesPhysics - Atomic Physics0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentMoore–Penrose pseudoinverse010302 applied physicsPhysics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Spectrometermagnetic field compensation systemInstrumentation and Detectors (physics.ins-det)Magnetic fieldComputational physicsElectromagnetic shieldingDC biasJournal of Applied Physics
researchProduct

Demonstration of sensitivity increase in mercury free-spin-precession magnetometers due to laser-based readout for neutron electric dipole moment sea…

2018

International audience; We report on a laser based $^{199}$Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its $^{204}$Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based ma…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole momentAtomic Physics (physics.atom-ph)Magnetometeratomic spectroscopyFOS: Physical sciencesAtomic spectroscopyNeutronelectric dipole moment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceslaw.inventionHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)symbols.namesakeneutronlaw0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physicsZeeman effect; Atomic spectroscopy; Mercury; Electric dipole moment; Neutron[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationNuclear ExperimentPhysicsZeeman effectElectric dipole moment010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Zeeman effectMercuryLaserComputational physicsMagnetic fieldElectric dipole momentAtomic spectroscopysymbols
researchProduct

Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

2015

We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a $|B_0|=1~\text{\mu T}$ magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCN of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of $1.1~\text{pT/cm}$. This novel combination …

Physics - Instrumentation and DetectorsDephasingGeneral Physics and AstronomyFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesResonance (particle physics)Nuclear physics0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentQCPhysicsNeutrons010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Models TheoreticalNeutron spectroscopyMagnetic fieldCold TemperatureElectric dipole momentKineticsSpin echoUltracold neutronsAtomic physicsGravitationPhysical review letters
researchProduct

Search for topological defect dark matter with a global network of optical magnetometers

2021

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Particle physicsGeneral Physics and AstronomyFOS: Physical sciences53001 natural sciencesArticleHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesDark energy and dark matterddc:530Atomic and molecular physics010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI

2021

It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mirror counterpart could potentially answer various standing issues in physics today. Astrophysical studies and terrestrial experiments led by ultracold neutron storage measurements have investigated neutron to mirror-neutron oscillations and imposed constraints on the theoretical parameters. Recently, further analysis of these ultracold neutron storage experiments has yielded statistically significant anomalous signals that may be interpreted as …

Nuclear and High Energy PhysicsNeutron electric dipole momentmedia_common.quotation_subjectmagnetic fieldWeak interaction[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Astronomy & Astrophysics01 natural sciences7. Clean energyAsymmetryrotationPhysics Particles & FieldsELECTRIC-DIPOLE MOMENTweak interaction0103 physical sciencesDark matterDARK-MATTERNeutron010306 general physicsnumerical calculationsmirrorNuclear mattermedia_commonoscillation: timePhysicsn: electric momentProperties of neutrons Ultracold neutrons Nuclear matter Mirror matter Dark matter Particle symmetriesScience & TechnologyProperties of neutronsParticle symmetries010308 nuclear & particles physicsparity: symmetryPhysicsNuclear matter[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]lcsh:QC1-999Mirror matterMagnetic fieldMODELPhysics Nuclear[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical SciencesUltracold neutronsAtomic physicsUltracold neutronsMirror matterasymmetrylcsh:PhysicsPhysics Letters B
researchProduct