0000000000116371

AUTHOR

Adam Gali

showing 4 related works from this author

Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study

2021

Physical review / B 103(3), 035307 (2021). doi:10.1103/PhysRevB.103.035307

PhysicsPhotoluminescenceSpinsBand gapCenter (category theory)Diamond02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics53001 natural sciences3. Good health0103 physical sciencesengineeringddc:530Atomic physics010306 general physics0210 nano-technologyNitrogen-vacancy centerGround stateSpin (physics)Den kondenserade materiens fysik
researchProduct

Optically detected magnetic resonances of nitrogen-vacancy ensembles inC13-enriched diamond

2016

We present an experimental and theoretical study of the optically detected magnetic resonance signals for ensembles of negatively charged nitrogen-vacancy (NV) centers in a $^{13}\mathrm{C}$ isotopically enriched single-crystal diamond. We observe four broad transition peaks with superimposed sharp features at zero magnetic field and study their dependence on an applied magnetic field. A theoretical model that reproduces all qualitative features of these spectra is developed. Understanding the magnetic-resonance spectra of NV centers in an isotopically enriched diamond is important for emerging applications in nuclear magnetic resonance.

Materials sciencechemistry.chemical_elementDiamond02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesNitrogenSpectral lineMagnetic fieldchemistryVacancy defect0103 physical sciencesengineeringAtomic physics010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Fundaments of photoelectric readout of spin states in diamond

2021

Abstract The chapter “Fundaments of photoelectric readout of spin states in diamond” deals with the detection of NV centre spins in diamond using the photoelectric detection of magnetic resonances (PDMR) method, introduced in a series of recent publications. It provides in particular insights into the physics of electronic transitions of the NV center, leading to the free carrier generation, and discusses methodologies how to implement the photocurrent detection principles in the dynamically evolving field of quantum technologies. Recent results on the single electron and the single nuclear spin qubits photoelectric readout are presented, along with a microwave-free NV magnetometry techniqu…

PhysicsSpin statesSpinsPhysics::Instrumentation and DetectorsMagnetometerbusiness.industryDiamondPhotoelectric effectengineering.materiallaw.inventionQuantum technologylawQubitengineeringOptoelectronicsbusinessSpin (physics)
researchProduct

Photoluminescence at the ground state level anticrossing of the nitrogen-vacancy center in diamond

2020

The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin states, which enables to have an effect on the NV center's luminescence for a broad variety of environmental couplings. In this article we report on the GSLAC photoluminescence signature of NV ensembles in different spin environments at various external fields. We investigate the effects of transverse electric and magnetic fields, P1 centers, NV centers, and the $^{13}$C nuclear spins, each of which gives rise to a unique PL signature at the GSLAC. …

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciences
researchProduct