0000000000116495
AUTHOR
Olimpia Pepe
Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP-16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae
Twenty-seven new Rhizobium isolates were obtained from root nodules of wild and crop legumes belonging to the genera Vicia, Lathyrus and Pisum from different agroecological areas in central and southern Italy. A polyphasic approach including phenotypic and genotypic techniques was used to study their diversity and their relationships with other biovars and species of rhizobia. Analysis of symbiotic properties and stress tolerance tests revealed that wild isolates, showed a wide spectrum of nodulation and a marked variation in stress tolerance compared with reference strains tested in this study. All rhizobial isolates (except for the isolate CG4 from Galega officinalis) were presumptively i…
Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches
The Campania region in southern Italy is noted for its large number of churches that harbour invaluable frescoes, dated from the beginnings of the 4th up to the 13th century. The wall paintings represent an integral part of the monuments, and their deterioration constitutes a potentially significant loss for the world's cultural heritage. Heterotrophic microorganisms such as bacteria and mould can grow on the surface of paintings that contain a wide range of organic and inorganic constituents, and provide different ecological. niches that are exploited by a large variety of microbial. species. We isolated and identified the heterotrophic microorganisms found in the biodegraded medieval wall…
Technological and molecular diversity of Lactobacillus plantarum strains isolated from naturally fermented sourdoughs.
Thirty Lactobacillus (L.) plantarum strains, isolated from sourdough, were identified by biochemical tests as well as 16S rDNA sequencing and differentiated on the basis of technological properties, such as amylase, protease, phytase and antirope activities. These properties were shown to be widely differing among the strains, indicating a significant technological diversity. Genetic differentiation was achieved by restriction endonuclease analysis-pulsed field gel electrophoresis (REA-PFGE) that allowed the L. plantarum strains to be divided into 10 different genomic groups. Moreover, 32 different starters were employed in dough making experiments; each starter consisted of a single strain…
Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants
We investigated the effect of residual salts from the previous summer’s irrigation on two non-irrigated cover crops—broad bean and common vetch—and on their rhizobial symbiontics. Before sowing, seeds were inoculated with a salt-tolerant strain and a salt-sensitive strain of Rhizobium leguminosarum biovar viciae. An increase in the electrical conductivity of the saturated-soil extract from 2.0 dS m−1 to 6.0 dS m−1 caused a severe reduction of broad bean biomass, while growth of common vetch was almost unaffected by the salinity level. Our results clearly indicate that common vetch as a cover crop may increase the availability of nitrogen in soil more than broad bean also in saline environme…
Changes in soil mineral N content and abundances of bacterial communities involved in N reactions under laboratory conditions as predictors of soil N availability to maize under field conditions.
Proper management of soil fertility requires specific tools for predicting N availability for crops as a consequence of different fertilization strategies. More information is required, especially for organic fertilizers, depending on their mineralization rate, composition, and processing (i.e., fresh or composted manure), as well as their effects on soil properties. Laboratory soil incubations were used as a proxy for understanding plant–soil N dynamics under field conditions. Chemical and microbiological measurements as contents of mineral N, potentially mineralizable N and the abundance of key genes regulating the overall N cycle were used as predictors of mineral N availability to maize…
Impact of Innovative Agricultural Practices of Carbon Sequestration on Soil Microbial Community.
This chapter deals with the impact on soil microbiology of innovative management techniques for enhancing carbon sequestration. With in the MESCOSAGR project, the effect of different field treatments was investigated at three experimental sites differing in pedo-climatic characteristics. Several microbiological parameters were evaluated to describe the composition of soil microbial communities involved in the carbon cycle, as well as to assess microbial biomass and activity. Results indicated that both compost and catalyst amendments to field soils under maize or wheat affected microbial dynamics and activities, though with out being harmful to microbial communities.
Response of Soil Microbial Communities to Iron-Porphyrin Catalytic Amendments.
Intensive agricultural practices strongly increase CO2 emission from soil. Synthetic metal-porphyrins were shown to significantly decreased CO2 emission from soil due to an in-situ catalysis of oxidative polymerization of soil organic matter. This research aimed to assess the effects of iron-porphyrin (POR) amendments on soil microbial communities in three arable soils under wheat and maize cropping located in Naples, Turin and Piacenza, characterized by different pedological and climatic conditions. Bulk-soil and rhizo-soil were sampled during 4 years and the microbial groups directly involved in organic matter (OM) mineralization and in key processes of the nitrogen cycle were examined. M…