0000000000116629

AUTHOR

Francesco Malaspina

0000-0002-6740-6051

Surfaces of minimal degree of tame representation type and mutations of Cohen–Macaulay modules

We provide two examples of smooth projective surfaces of tame CM type, by showing that any parameter space of isomorphism classes of indecomposable ACM bundles with fixed rank and determinant on a rational quartic scroll in projective 5-space is either a single point or a projective line. For surfaces of minimal degree and wild CM type, we classify rigid Ulrich bundles as Fibonacci extensions. For the rational normal scrolls S(2,3) and S(3,3), a complete classification of rigid ACM bundles is given in terms of the action of the braid group in three strands.

research product

Rank two aCM bundles on the del Pezzo fourfold of degree 6 and its general hyperplane section

International audience; In the present paper we completely classify locally free sheaves of rank 2 with vanishing intermediate cohomology modules on the image of the Segre embedding $\mathbb{P}^2$ x $\mathbb{P}^2 \subseteq \mathbb{P}^8$ and its general hyperplane sections.Such a classification extends similar already known results regarding del Pezzo varieties with Picard numbers 1 and 3 and dimension at least 3.

research product

Moduli spaces of rank two aCM bundles on the Segre product of three projective lines

Let P^n be the projective space of dimension n on an algebraically closed field of characteristic 0 and F be the image of the Segre embedding of P^1xP^1xP^1 inside P^7. In the present paper we deal with the moduli spaces of locally free sheaves E on F of rank 2 with h^i(F,E(t))=0 for i=1,2 and each integer t.

research product