0000000000116722

AUTHOR

C. Raison

showing 12 related works from this author

High-Statistics Sub-Barrier Coulomb Excitation of $^{106,108,110}$Sn

2020

International audience; A Coulomb excitation campaign on $^{106,108,110}$Sn at 4.4–4.5 MeV/u was launched at the HIE-ISOLDE facility at CERN. Larger excitation cross sections and γ-ray statistics were achieved compared to previous experiments at ∼2.8 MeV/u. More precise $(B(E2;0_{1}^{ + } \to 2_{1}^{ + }))$ values, lifetimes of states via the Doppler shift attenuation method, and new $(B(E2;0_{1}^{ + } \to 2_{x}^{ + })), (B(E2;2_{1}^{ + } \to 4_{1}^{ + }))$ and $(Q(2_{1}^{ + }))$ values from the new Miniball data will be obtained and applied to test modern nuclear structure theories.

Physics010308 nuclear & particles physicsCoulomb excitation0103 physical sciencesshell modelNuclear Physics - ExperimentCoulomb excitationAtomic physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]010306 general physics01 natural sciencesnuclear collectivity
researchProduct

Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive Ra222 and Ra228 Beams

2020

There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.

PhysicsIsotopeNuclear TheoryGeneral Physics and Astronomychemistry.chemical_elementCoulomb excitation01 natural sciencesRadiumMatrix (mathematics)chemistryExcited state0103 physical sciencesAtomic nucleusCoulombPhysics::Accelerator PhysicsPhysics::Atomic PhysicsAtomic physicsDeformation (engineering)Nuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Large shape staggering in neutron-deficient Bi isotopes

2021

The changes in the mean-square charge radius (relative to 209Bi), magnetic dipole, and electric quadrupole moments of 187,188,189,191Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in 187,188,189Big, manifested by a sharp radius increase for the ground state of 188Bi relative to the neighboring 187,189Big. A large isomer shift was also observed for 188Bim. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were…

PhysicsMagnetic moment010308 nuclear & particles physics116 Chemical sciencesGeneral Physics and Astronomy[CHIM.MATE]Chemical Sciences/Material chemistry01 natural sciencesPhysique atomique et nucléaire[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryCharge radiusNeutron number0103 physical sciencesQuadrupoleNuclear Physics - ExperimentNeutronAtomic physics010306 general physicsSpin (physics)Ground stateMagnetic dipole
researchProduct

In-source laser spectroscopy of dysprosium isotopes at the ISOLDE-RILIS

2019

A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (RILIS). Isotope shifts were measured relative to $^{152}$Dy in the 4 f$^{ 10}$6s$^{2}$ $^5$I$_8$ (gs) $\rightarrow$ 4 f$^{ 10}$6s6p (8,1)$^8_o$ (418.8 nm$_{vac}$) resonance transition. The electronic factor, F, and mass shift factor, M, were extracted and used for determining the changes in mean-squared charge radii for $^{145m}$Dy and $^{147m}$Dy for the first time. A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (…

Nuclear and High Energy PhysicsMaterials science010504 meteorology & atmospheric sciencesIsotope3106010308 nuclear & particles physics3105Analytical chemistrychemistry.chemical_elementResonanceLaser01 natural sciencesIon sourceShift factorlaw.inventionchemistrylaw0103 physical sciencesResonance ionizationDysprosiumSpectroscopyInstrumentation0105 earth and related environmental sciences
researchProduct

The observation of vibrating pear-shapes in radon nuclei

2019

6 pags., 4 fig.s, 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0

Physics beyond the Standard ModelScienceNuclear TheoryGeneral Physics and Astronomychemistry.chemical_elementRadon[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyRadiumQuantum state0103 physical sciencesCP: violationground stateNuclear Physics - ExperimentPhysics::Atomic PhysicsExperimental nuclear physicslcsh:Science010306 general physicsnumerical calculationsNuclear ExperimentPhysicsMultidisciplinaryIsotope010308 nuclear & particles physicsnew physicsnucleusQradonGeneral ChemistryPublisher Correctionradiumexotic nucleielectric momentchemistryradioactivityMoment (physics)Atomic nucleusCP violationlcsh:QExotic atoms and moleculesAtomic physicsydinfysiikka
researchProduct

Large Shape Staggering in Neutron-Deficient Bi Isotopes

2021

researchProduct

Coulomb excitation of Rn-222

2022

The nature of quadrupole and octupole collectivity in 222Rn was investigated by determining the electric-quadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive 222Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball γ-ray spectrometer following the bombardment of two targets, 120Sn and 60Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10ℏ and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11)efm2. The values of the intrinsic electric-octupole moment for the 0+→3− and 2+→5− transi…

Science & TechnologyPhysics NuclearSTATESPhysicsSHAPESPhysical SciencesISOTOPESRADON
researchProduct

First ß-decay spectroscopy of 135In and new ß-decay branches of 134In

2021

researchProduct

First β-decay spectroscopy of $^{135}$In and new $β$-decay branches of $^{134}$In

2021

International audience; The $\beta$ decay of the neutron-rich $^{134}$In and $^{135}$In was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number $Z=50$ above the $N=82$ shell. The $\beta$-delayed $\gamma$-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three $\beta$-decay branches of $^{134}$In were established, two of which were observed for the first time. Population of neutron-unbound states decaying via $\gamma$ rays was identified in the two daughter nuclei of $^{134}$In, $^{134}$Sn and $^{133}$Sn, at…

isotoopitmittausAstrophysics::High Energy Astrophysical PhenomenaspektroskopiaNuclear TheoryNuclear Physics - Experimentneutronit[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]fysiikkaydinfysiikkaNuclear ExperimentNuclear Experiment
researchProduct

First β -decay spectroscopy of In 135 and new β -decay branches of In 134

Physical Review C
researchProduct

Detailed spectroscopy of doubly magic $^{132}$Sn

2020

The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $\beta^-$decay of $^{132}$In and $\beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is greatly expanded with the addition of 68 $\gamma$-transitions and 17 levels observed for the first time in the $\beta$ decay. The information on the excited structure is completed by new $\gamma$-transitions and states populated in the $\beta$-n decay of $^{133}$In. Improved delayed neutron emission probabilities are obtained both for $^{132}$In and $^{133}$In. Level lifetimes are measured via the Advanced Time-Delayed $\beta\gamma\gamma$(t) fas…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNuclear Physics - Experiment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)nucl-exNuclear StructureNuclear Experiment
researchProduct

Coulomb excitation of 222Rn

2022

International audience; The nature of quadrupole and octupole collectivity in $^{222}$Rn was investigated by determining the electric-quadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive $^{222}$Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball $\gamma$ -ray spectrometer following the bombardment of two targets, $^{120}$Sn and $^{60}$Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10 ¯h and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11) $e$ fm$^2$ . The values of the int…

A ≥ 220electromagnetic transitionsnuclear structure & decaysNuclear Physics - Experimentradon[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ydinfysiikka114 Physical sciences
researchProduct