6533b861fe1ef96bd12c4337

RESEARCH PRODUCT

Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive Ra222 and Ra228 Beams

J. SinclairJoonas KonkiM. LozanoA. IllanaD. T. JossS. VinalsRobert PageTh. KröllA. GoldkuhleK. Wrzosek-lipskaD. RosiakLiam GaffneyLiam GaffneyM. ZielińskaV. VirtanenV. VirtanenP. Van DuppenP. E. GarrettK. AbrahamsH. De WitteT.m. ShneidmanJ. OjalaJ. OjalaP. ReiterDavid O'donnellMike BowryMike BowryP. SpagnolettiN. WarrM. SeidlitzM. StryjczykB. SiebeckP. A. ButlerMarcus ScheckKarl JohnstonM. KomorowskaJ. F. SmithL. G. PedersenJ. M. KeatingsJoakim CederkällG. De AngelisC. HenrichB. S. Nara SinghN. A. KellySebastian RotheC. RaisonJose Rodriguez

subject

PhysicsIsotopeNuclear TheoryGeneral Physics and Astronomychemistry.chemical_elementCoulomb excitation01 natural sciencesRadiumMatrix (mathematics)chemistryExcited state0103 physical sciencesAtomic nucleusCoulombPhysics::Accelerator PhysicsPhysics::Atomic PhysicsAtomic physicsDeformation (engineering)Nuclear Experiment010306 general physics

description

There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.

https://doi.org/10.1103/physrevlett.124.042503