0000000000017922

AUTHOR

Jose Rodriguez

0000-0002-1410-4121

Voltage Source Multilevel Inverters With Reduced Device Count: Topological Review and Novel Comparative Factors

Multilevel inverters (MLIs) have gained increasing interest for advanced energy-conversion systems due to their features of high-quality produced waveforms, modularity, transformerless operation, voltage, and current scalability, and fault-tolerant operation. However, these merits usually come with the cost of a high number of components. Over the past few years, proposing new MLIs with a lower component count has been one of the most active topics in power electronics. The first aim of this article is to update and summarize the recently developed multilevel topologies with a reduced component count, based on their advantages, disadvantages, construction, and specific applications. Within …

research product

Novel Three-Phase Multi-Level Inverter with Reduced Components

A new multilevel converter topology is proposed in this paper. Low component count and compact design are the main features of the proposed topology. Furthermore, the proposed converter is a capacitor-, inductor-, and diode-free configuration, allowing reducing the converter footprint, increasing the lifetime and simplifying the control strategy. Further, a comparative study is carried out to highlight the merits of the proposed circuit as compared to existing multilevel topologies. Finally, simulation results for the three-level version using different modulation strategies are presented.

research product

Dealing with contaminants in Coulomb excitation of radioactive beams

Abstract Data analysis of the Coulomb excitation experiment of the exotic 206Hg nucleus, recently performed at CERN’s HIE-ISOLDE facility, needs to account for the contribution to target excitation due to the strongly-present beam contaminant 130Xe. In this paper, the contamination subtraction procedure is presented.

research product

Quadrupole deformation of Xe-130 measured in a Coulomb-excitation experiment

Physical review / C 102(5), 054304 (2020). doi:10.1103/PhysRevC.102.054304

research product

Enhanced Quadrupole and Octupole Strength in Doubly Magic Sn132

The first 2+ and 3- states of the doubly magic nucleus Sn132 are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The Sn132 ions are accelerated to an energy of 5.49 MeV/nucleon and impinged on a Pb206 target. Deexciting γ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions 0g.s.+→21+, 0g.s.+→31-, and 21+→31- in Sn132. The results on these states provide crucial information on cross-shell configurations which are determined within large-sca…

research product

First operational experience of HIE-ISOLDE

The High Intensity and Energy ISOLDE project (HIE-ISOLDE)* is a major upgrade of the ISOLDE facility at CERN. The energy range of the post-accelerator will be extended from 2.85 MeV/u to 9.3 MeV/u for beams with A/q = 4.5 (and to 14.3 MeV/u for A/q = 2.5) once all the cryomodules of the superconducting accelerator are in place. The project has been divided into different phases, the first of which (phase 1a) finished in October 2015 after the hardware and beam commissioning were completed**. The physics campaign followed with the delivery of both radioactive and stable beams to two different experimental stations. The characteristics of the beams (energies, intensities, time structure and b…

research product

Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive Ra222 and Ra228 Beams

There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.

research product

The observation of vibrating pear-shapes in radon nuclei

6 pags., 4 fig.s, 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

Novel Three-Phase Multilevel Inverter With Reduced Components for Low- and High-Voltage Applications

In this article, a novel multilevel topology for three-phase applications, having three-level and hybrid N -level modular configurations, enabling low-, medium-, and high-voltage operations, is presented. The proposed topology has several attractive features, namely reduced component count, being capacitor-, inductor-, and diode-free, lowering cost, control-complexity, and size, and can operate in a wide range of voltages and powers. Selected simulation and experimental results are presented to verify the performance of the proposed topology. Further, the overall efficiency of the topology and loss distribution in switches are studied. Finally, the key features of the proposed topology in t…

research product

Coulomb excitation of pear-shaped nuclei

There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we have observed the low-lying quantum states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable condition…

research product