0000000000681966
AUTHOR
M. Komorowska
Coulomb excitation of Rn-222
The nature of quadrupole and octupole collectivity in 222Rn was investigated by determining the electric-quadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive 222Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball γ-ray spectrometer following the bombardment of two targets, 120Sn and 60Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10ℏ and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11)efm2. The values of the intrinsic electric-octupole moment for the 0+→3− and 2+→5− transi…
Spectroscopy of Low-lying States in $^{140}$Sm
International audience; Electromagnetic transition strengths and spectroscopic quadrupole moments for Sm-140 were measured by means of multi-step Coulomb excitation with radioactive beam at the ISOLDE facility at CERN. A complementary experiment was performed at the Heavy Ion Laboratory in Warsaw to assign spins for non-yrast states using the angular correlation technique. Based on the new experimental data previous spin assignments need to be revised.
Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive Ra222 and Ra228 Beams
There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.
Coulomb excitation of 222Rn
International audience; The nature of quadrupole and octupole collectivity in $^{222}$Rn was investigated by determining the electric-quadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive $^{222}$Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball $\gamma$ -ray spectrometer following the bombardment of two targets, $^{120}$Sn and $^{60}$Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10 ¯h and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11) $e$ fm$^2$ . The values of the int…
The observation of vibrating pear-shapes in radon nuclei
6 pags., 4 fig.s, 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Coulomb excitation of pear-shaped nuclei
There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we have observed the low-lying quantum states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable condition…