0000000000116743

AUTHOR

Ineke De Moortel

0000-0002-1452-9330

The Heating of the Solar Corona

The solar corona, the outer atmosphere of the Sun, is heated to millions of Kelvin. This is several orders of magnitude hotter than the photosphere, the optical surface of the Sun, below, and a mystery that has baffled scientists for centuries. The answer to the question of how the solar corona is heated lies in the crucial magnetic connection through the atmosphere of the Sun. The magnetic field that threads the corona extends below the solar photosphere, where convective motions drag the magnetic field footpoints, tangling and twisting them. The chromosphere is the atmospheric layer above the photosphere, and the magnetic field provides an important connection between these layers. The ex…

research product

In Situ Generation of Transverse Magnetohydrodynamic Waves from Colliding Flows in the Solar Corona

This research has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1) and the European Union Horizon 2020 Research and Innovation Programme (grant agreement No. 647214). V.M.N. acknowledges the support of the BK21 plus program through the National Research Foundation funded by the Ministry of Education of Korea. Transverse magnetohydrodynamic (MHD) waves permeate the solar atmosphere and are a candidate for coronal heating. However, the origin of these waves is still unclear. In this Letter, we analyze coordinated observations from Hinode/Solar Optical Telescope (SOT) and Interface Region Imaging Spectrograph (IRIS) of a prominence/corona…

research product

Probing the physics of the solar atmosphere with the Multi-slit Solar Explorer (MUSE): I. Coronal Heating

The Multi-slit Solar Explorer (MUSE) is a proposed NASA MIDEX mission, currently in Phase A, composed of a multi-slit EUV spectrograph (in three narrow spectral bands centered around 171A, 284A, and 108A) and an EUV context imager (in two narrow passbands around 195A and 304A). MUSE will provide unprecedented spectral and imaging diagnostics of the solar corona at high spatial (<0.5 arcsec), and temporal resolution (down to ~0.5s) thanks to its innovative multi-slit design. By obtaining spectra in 4 bright EUV lines (Fe IX 171A , Fe XV 284A, Fe XIX-Fe XXI 108A) covering a wide range of transition region and coronal temperatures along 37 slits simultaneously, MUSE will for the first time …

research product