0000000000117267

AUTHOR

Alfredo Portone

Modeling of ITER TF cooling system through 2D thermal analyses and enthalpy balance

Abstract The winding pack of the ITER Toroidal Field (TF) coils is composed of 134 turns of Nb3Sn Cable in Conduit Conductor (CICCs) wound in 7 double pancakes and cooled by supercritical helium (He) at cryogenic temperature. The cooling of the Stainless Steel (SS) case supporting the winding pack is guaranteed by He circulation in 74 parallel channels. A 2D approach to compute the temperature distribution in the ITER TF winding pack is here proposed. The TF is divided in 32 poloidal segments, for each segment the corresponding 2D model is built and a thermal analysis is performed applying the corresponding nuclear heating computed with MCNP code considering the latest design updates, such …

research product

Damping effect on the ITER vacuum vessel displacements during slow downward locked and rotating asymmetric vertical displacement events

Abstract In this paper, we present the electromechanical coupled analysis of the ITER vacuum vessel in case of slow downward locked and rotating Asymmetric VDEs. The numerical model for simulating the AVDE includes the asymmetric distribution of the halo currents obtained by a suitable 3D kink perturbation of a slow VDE downward computed by the 2D code DINA. In the case of a rotational AVDE, the rotation frequency of the kink asymmetry has been chosen to be ω = 2π × 5 rad/s. The model includes the mesh of the main passive components facing the plasma. The whole torus (360 degrees) has been discretized. It is shown that the very high complexity of the numerical model can be suitably treated.…

research product

F4E load transfer procedure among finite element models different in topology or in discretization

Abstract In this paper, a methodology developed in Fusion for Energy (F4E) for interpolating mechanical loads both between compatible (i.e. from solid to solid models different in discretization) and incompatible (e.g. from solid models to shell/beam models) FE models is described. This novel procedure is able of transferring a force vector field (i.e. Lorentz forces) from a three-dimensional solid mesh (e.g. electromagnetic model) onto a target mesh (e.g. mechanical model), being it either three-dimensional solid or simplified beam/shell model. This interpolation procedure is developed with the aim of preserving both the global and local mechanical equilibrium of the system in terms of res…

research product

Development of a Two-Dimensional Simplified Tool for the Analysis of the Cooling of the ITER TF Winding Pack

The cooling of the ITER toroidal field (TF) coils winding pack is guaranteed by the circulation of supercritical helium (He) in seven hydraulic circuits corresponding to the Nb3Sn cable in conduit conductors, and in 74 channels devoted to the cooling of the stainless steel case supporting the winding pack. A tool entirely developed inside ANSYS with the APDL language has been created with the aim of computing the temperature distribution in the TF winding pack in different poloidal locations. The tool also allows the assessment of the He temperature during plasma operation in the case cooling channels. The considered heat load is the volumetric nuclear heating computed with the MCNP code in…

research product