0000000000117336

AUTHOR

Olivier Pottiez

showing 12 related works from this author

Actively mode-locked all-fiber laser by 5 MHz transmittance modulation of an acousto-optic tunable bandpass filter

2018

Active mode-locking of an all-fiber ring laser by transmittance modulation of an in-fiber acousto-optic tunable bandpass filter (AOTBF) is reported. Cavity loss modulation is achieved by full acousto-optic mode re-coupling cycle induced by standing flexural acoustic waves. The modulator permits the implementation of 28 dB of nonresonant light suppression, 1.4 nm of modulation bandwidth, 74% of modulation depth and 4.11 dB of optical loss in a 72.5 cm-long all-fiber configuration. The effects of the modulated AOTBF on the laser performance are investigated. Transform-limited optical pulses of 8.8 ps temporal width and 6.0 W peak power were obtained at 4.87 MHz repetition rate.

Materials scienceOptical fiberPhysics and Astronomy (miscellaneous)Ring laser02 engineering and technology01 natural scienceslaw.invention010309 opticsAmplitude modulationacousto-optic modulationBand-pass filterlaw0103 physical sciencesTransmittancefibre opticsInstrumentationmode-locked fiber lasersbusiness.industryAcoustic wave021001 nanoscience & nanotechnologyLaserUNESCO::FÍSICA::Óptica ::Fibras ópticasModulation:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Optoelectronics0210 nano-technologybusiness
researchProduct

Q-switched mode locking noise-like pulse generation from a thulium-doped all-fiber laser based on nonlinear polarization rotation

2021

Abstract Q-switched mode locking (QML) noise-like pulse (NLP) emission from an all-fiber thulium-doped laser based on the nonlinear polarization rotation effect is reported. The QML emission is obtained in a cavity with net anomalous dispersion in a pump power interval in between the CW laser threshold and the threshold of the NLP regime. Highest-energy QML pulses were observed with a repetition rate of 812 kHz with a pump power of 520 mW at the optical wavelength of 1881.09 nm. A maximum overall energy of 460 nJ at an average output power of 6.4 mW was reached, which corresponds to a burst of mode-locked noise-like sub-pulses with 8.7 ns of pulse duration within a QML envelope of 11 µs. Th…

Nonlinear polarization rotationPhysicsQ-switched mode lockingbusiness.industryPhysics::Opticschemistry.chemical_elementPulse durationThulium-doped fiber lasersQC350-467Optics. LightÒpticaLaserNoise (electronics)Atomic and Molecular Physics and OpticsPulse (physics)law.inventionThuliumOpticschemistryMode-lockinglawFiber laserbusinessEnvelope (waves)Results in Optics
researchProduct

Sub-200-kHz single soliton generation in a long ring Er-fiber laser with strict polarization control by using twisted fiber

2020

Abstract In the present work we demonstrate a novel single-soliton ultra-low pulse repetition frequency passively mode-locked erbium-doped fiber laser. We mitigate the residual linear birefringence of fiber by fiber twist to achieve a strict control of polarization. For mode-locking the nonlinear polarization rotation (NPR) was used. Special technique was applied to reduce the overdriving of NPR that allows the generation of single soliton in ultra-long cavity. The strict control of polarization yields a stable relation between the polarization state of the pulses propagating in the cavity and the regimes of generation. A 192.12-kHz train of soliton pulses was obtained with pulse duration o…

Pulse repetition frequencyPhysics::Optics02 engineering and technology01 natural sciences010309 optics020210 optoelectronics & photonicsOptics:FÍSICA [UNESCO]Fiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringsolitonsultra-long laser cavityElectrical and Electronic EngineeringTwistmode-locked fiber lasersPhysicsbusiness.industrynonlinear opticsUNESCO::FÍSICAPulse durationNonlinear opticsNonlinear polarizationPolarization (waves)Atomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsoverdriving nonlinear effectsSolitonbusiness
researchProduct

A dual-wavelength tunable laser with superimposed fiber Bragg gratings

2013

We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths.

PHOSFOSMaterials sciencebusiness.industryPhysics::OpticsCondensed Matter PhysicsCavity lossIndustrial and Manufacturing EngineeringAtomic and Molecular Physics and OpticsWavelengthOpticsFiber Bragg gratingFiber laserDual wavelengthFiberbusinessInstrumentationTunable laserLaser Physics
researchProduct

Q switching and mode locking pulse generation from an all-fiber ring laser by intermodal acousto-optic bandpass modulation

2018

Q-switched and mode-locked (QML) pulse generation from an all-fiber ring laser based on intermodal acousto-optic bandpass modulation is reported. The modulator relies on full-acousto-optic mode re-coupling cycle induced by a standing flexural acoustic wave, with a transmission response that is controlled by amplitude modulation of the acoustic wave signal. The Q factor of the cavity is controlled by a rectangular pulse wave with variable frequency and duty cycle, whereas mode locking is achieved by amplitude modulation derived from a standing flexural acoustic wave. The best QML pulses were obtained at 0.5 kHz repetition rate, with a pump power of 549.2 mW, at the optical wavelength of 1568…

Optical fiberMaterials scienceRing laser02 engineering and technologyFiber optics01 natural sciencesIndustrial and Manufacturing Engineeringlaw.invention010309 opticsFiber lasers020210 optoelectronics & photonicsOpticsBand-pass filterlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringInstrumentationAcousto-optic modulationbusiness.industryCondensed Matter PhysicsQ-switchingAtomic and Molecular Physics and OpticsUNESCO::FÍSICA::Óptica ::Fibras ópticasPulse (physics)Q-switched and mode-lockedAll fiberMode-lockingModulation:FÍSICA::Óptica ::Fibras ópticas [UNESCO]business
researchProduct

Long cavity ring fiber mode-locked laser with decreased net value of nonlinear polarization rotation

2019

We investigate a new configuration of a mode-locked fiber laser by using a nonlinear polarization rotation-based design to generate soliton pulses with low repetition rate. Unlike with previously reported configurations, we introduce a Faraday mirror after the first half of the cavity length to counteract the nonlinear polarization rotation effects. The total cavity length is 437 m including a 400-m long twisted SMF-28 fiber. The fiber was twisted to cancel the linear birefringence and to ensure that the polarization ellipticity is not altered as the pulse travels along the fiber. The strict control of polarization yields a stable relation between the polarization state of the pulses propag…

Linear birefringenceLaserFiber LaserPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsOpticslawFiber laser0103 physical sciencesFaraday cagePhysicsbusiness.industryPulse durationNonlinear polarization021001 nanoscience & nanotechnologyLaserPolarization (waves)UNESCO::FÍSICA::Óptica ::Fibras ópticasAtomic and Molecular Physics and Optics:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Soliton0210 nano-technologybusinessMode-Locked LaserOptics Express
researchProduct

The nonlinear optical loop mirror: soliton and noise-like pulse emission in a figure-eight fiber laser

2021

In this article, a symmetrical nonlinear optical loop mirror (NOLM) exhibiting a polarization-dependent transmission is evaluated to generate optical pulse emission in a figure-eight fiber laser in the soliton and noise-like pulse (NLP) regimes. The NOLM structure relies on a 50:50 fiber coupler, a loop with highly twisted single-mode optical fiber and a quarter-wave retarder (QWR) to break the polarization asymmetry. The pulse operation regime is determined by properly adjusting the NOLM low-power transmission, which is easily realized by the rotation of the QWR angle. Soliton pulses of 1.48 ps pulse duration and peak power of 18 W were observed with a peak to peak separation of 1.25 µs, c…

PhysicsOptical fiberbusiness.industryPulse durationSoliton (optics)Polarization (waves)Noise (electronics)Pulse (physics)law.inventionOpticsTransmission (telecommunications)lawFiber laserbusinessSuplemento de la Revista Mexicana de Física
researchProduct

Broadband tuning of a long-cavity all-fiber mode locked Thulium-doped fiber laser using an acousto-optic bandpass filter

2019

A long-cavity passively mode-locked thulium-doped all-fiber laser is reported incorporating a tapered acousto-optic tunable bandpass filter (AOTBF). The operation of the AOTBF relies on the intermodal coupling between core and cladding modes when a flexural acoustic wave propagates along an 80-microm tapered fiber. The filter works in transmission and exhibits a 3-dB bandwidth of 9.02 nm with an insertion loss of 3.4 dB. The laser supports ultrashort pulse generation at a low repetition rate of 784.93 kHz. Optical pulses with 2.43 nm of optical bandwidth and 2.1 ps pulse duration were obtained in a broad tuning range from 1824.77 to 1905.16 nm.

Materials science02 engineering and technology01 natural scienceslaw.invention010309 opticsfiber laserOpticsBand-pass filter:FÍSICA [UNESCO]lawFiber laser0103 physical sciencesInsertion lossfiber opticsthulium laserbusiness.industryBandwidth (signal processing)UNESCO::FÍSICAPulse durationmode-locked laser021001 nanoscience & nanotechnologyLaserCladding (fiber optics)Atomic and Molecular Physics and Optics0210 nano-technologybusinessUltrashort pulse
researchProduct

Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser

2017

The conditions to obtain noise-like pulses (NLPs) from a figure-eight fiber laser (F8L) and their application for supercontinuum (SC) generation in the anomalous dispersion regime are reported. The F8L is designed to remove the undesired low-intensity background radiation from pulse emission, generating NLPs with a 3 dB spectral bandwidth of 17.43 nm at the fundamental repetition frequency of 0.8 MHz. After amplification, NLPs reach a maximum average power of 9.2 mW and 123.32 nm spectral bandwidth. By controlling the amplifier pump power, flat SC generation is demonstrated through both a 800 m long spool of SMF-28 fiber and a piece of 5 m long highly nonlinear optical fiber. The results de…

Materials sciencePhysics and Astronomy (miscellaneous)business.industryAmplifierBandwidth (signal processing)02 engineering and technology01 natural sciencesNonlinear optical fiberUNESCO::FÍSICA::Óptica ::Fibras ópticasSupercontinuum010309 optics020210 optoelectronics & photonics:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Fiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsbusinessInstrumentationErbium doped fiber laserssupercontinuum generationnonlinear effects
researchProduct

Improved All-Fiber Acousto-Optic Tunable Bandpass Filter

2017

An all-fiber acousto-optic tunable bandpass filter based on a 1.185-mm long coreless core mode blocker is reported. Experimental results demonstrate a minimal insertion loss of 1.2 dB at the optical resonant wavelength of 1527.7 nm with 3-dB optical bandwidth of 0.83 nm. The optimization of the device takes into account the attenuation of the acoustic wave and leads to an asymmetric configuration in which the coupling section is shorter than the recoupling part. Under the effect of a standing flexural wave the device can be operated as a bandpass modulator. The device exhibits a maximum modulation depth of 28%, 4 dB of insertion loss and 0.97 nm of optical bandwidth at 4.774 MHz.

Materials scienceOptical fiber02 engineering and technology01 natural scienceslaw.invention010309 opticsAmplitude modulationOpticsBand-pass filterlaw0103 physical sciencesInsertion lossOptical fibersElectrical and Electronic EngineeringModulationbusiness.industryAttenuationBandwidth (signal processing)021001 nanoscience & nanotechnologyUNESCO::FÍSICA::Óptica ::Fibras ópticasAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthAcoustic waves:FÍSICA::Óptica ::Fibras ópticas [UNESCO]ModulationCouplings0210 nano-technologybusinessOptical attenuatorsIEEE Photonics Technology Letters
researchProduct

Experimental study of an in-fiber acousto-optic tunable bandpass filter for single- and dual-wavelength operation in a thulium-doped fiber laser

2019

A tunable single- and dual-wavelength thulium-doped all-fiber laser is demonstrated based on the implementation of an in-fiber acousto-optic tunable bandpass filter (AOTBF). The AOTBF is fabricated to be operated in the 1.9 µm region, and takes advantage of the intermodal coupling effect produced by traveling flexural acoustic waves in an optical fiber. It exhibits a 3-dB bandwidth of 2.04 nm with an insertion loss of 4.75 dB. The tuning properties of the AO device allows a continuous-wave operation with characteristics of wide tuning range (211.5 nm), narrow linewidth (50 pm) and high signal-to-noise ratio (60 dB). In the dual-wavelength regime, the laser is capable of independent tuning o…

Optical fiberMaterials scienceoptical fibers02 engineering and technology01 natural scienceslaw.invention010309 opticsLaser linewidthOpticsFiber Bragg gratingBand-pass filterlawFiber laser0103 physical sciencesInsertion lossUNESCO::FÍSICA::Ópticabusiness.industry021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and Opticsacousto-optic interactionfiber lasersWavelength:FÍSICA::Óptica [UNESCO]0210 nano-technologybusiness
researchProduct

Statistical characterization of the internal structure of noiselike pulses using a nonlinear optical loop mirror

2016

Abstract In this work we study statistically the internal structure of noiselike pulses generated by a passively mode-locked fiber laser. For this purpose, we use a technique that allows estimating the distribution of the amplitudes of the sub-pulses in the bunch. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM). It requires the measurement of the energy transfer characteristic of the pulses through the NOLM, and the numerical resolution of a system of nonlinear algebraic equations. The results yield a strongly asymmetric distribution, with a high-amplitude tail that is compatible with the existence of extreme-inte…

PhysicsKerr effectbusiness.industryPhysics::OpticsOptical rogue waves02 engineering and technology01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse (physics)010309 opticsNonlinear systemComplex dynamics020210 optoelectronics & photonicsAmplitudeOpticsFiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringPhysical and Theoretical ChemistryRogue wavebusinessOptics Communications
researchProduct