0000000000117351

AUTHOR

Jean-yves Ollitrault

0000-0001-6037-7975

showing 3 related works from this author

Evolution of fluctuations in the initial state of heavy-ion collisions from RHIC to LHC

2019

Fluctuations in the initial state of heavy-ion collisions are larger at RHIC energy than at LHC energy. This fact can be inferred from recent measurements of the fluctuations of the particle multiplicities and of elliptic flow performed at the two different energies. We show that an analytical description of the initial energy-density field and its fluctuations motivated by the color glass condensate (CGC) effective theory predicts and quantitatively captures the measured energy evolution of these observables. The crucial feature is that fluctuations in the CGC scale like the inverse of the saturation scale of the nuclei.

heavy ion: scatteringScale (ratio)Field (physics)Nuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesColor-glass condensateHigh Energy Physics - ExperimentNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsinitial stateNuclear ExperimentNuclear ExperimentBrookhaven RHIC CollPhysicsLarge Hadron Collider010308 nuclear & particles physicsfluctuationelliptic flowparticle: multiplicityElliptic flowObservableHigh Energy Physics - PhenomenologyCERN LHC Coll[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensateParticlescale: saturation
researchProduct

Does interferometry probe thermalization?

2009

We carry out a systematic study of interferometry radii in ultrarelativistic heavy-ion collisions within a two-dimensional transport model. We compute the transverse radii R_o and R_s as a function of p_t for various values of the Knudsen number, which measures the degree of thermalization in the system. They converge to the hydrodynamical limit much more slowly (by a factor 3) than elliptic flow. This solves most of the HBT puzzle for central collisions: R_o/R_s is in the range 1.1-1.2 for realistic values of the Knudsen number, much closer to experimental data ($\simeq 1$) than the value 1.5 from hydrodynamical calculations. The p_t dependence of R_o and R_s, which is usually said to refl…

PhysicsNuclear and High Energy PhysicsDegree (graph theory)Nuclear TheoryElliptic flowFOS: Physical sciencesNuclear Theory (nucl-th)Knudsen flowThermalisationAmplitudeSensitivity (control systems)Knudsen numberAtomic physicsEccentricity (mathematics)Nuclear Experiment
researchProduct

Effects of partial thermalization on HBT interferometry

2009

Hydrodynamical models have generally failed to describe interferometry radii measured at RHIC. In order to investigate this ``HBT puzzle'', we carry out a systematic study of HBT radii in ultrarelativistic heavy-ion collisions within a two-dimensional transport model. We compute the transverse radii $R_o$ and $R_s$ as functions of $p_t$ for various values of the Knudsen number, which measures the degree of thermalization in the system. For realistic values of the Knudsen number estimated from $v_2$ data, we obtain $R_o/R_s \simeq 1.2$, much closer to data than standard hydrodynamical results. Femtoscopic observables vary little with the degree of thermalization. Azimuthal oscillations of th…

PhysicsNuclear and High Energy PhysicsNuclear TheoryHeterojunction bipolar transistorFOS: Physical sciencesObservableNuclear Theory (nucl-th)Nuclear physicsAzimuthTransverse planeInterferometryThermalisationKnudsen numberNuclear ExperimentNuclear theoryNuclear Physics A
researchProduct