Poplar biomass production at phytomanagement sites is significantly enhanced by mycorrhizal inoculation
Abstract Afforestation of trace element (TE)-contaminated soil, notably with fast growing trees producing large biomass has been demonstrated to be an attractive option for their bioremediation. Mycorrhizal fungi can form symbiotic associations with plants, contributing to TE tolerance and participating actively in bioremediation processes. We studied the effects of mycorrhizal inoculation on the growth of two poplar clones (Skado and I214), to large-scale. Two TE-contaminated sites of ca . 1 ha (Pierrelaye and Fresnes-sur-Escaut, France) were planted with 2200 trees, and were either inoculated with a mixed commercial inoculum or not-inoculated and allometric parameters were determined afte…
Early screening of new accumulating versus non-accumulating tree species for the phytomanagement of marginal lands
International audience; The use of fast-growing trees producing a high quantity of biomass can bring significant practical and economic benefits to the reclamation of marginal lands. The present study aims to identify new shrub/tree species to offer a wider range of shrubs/trees useful for phytomanagement practices. We implemented three experimental sites in France of 1 ha each (Thann, Carrières-sous-Poissy and Leforest) contaminated by different potentially toxic elements (PTE) with a total of 38 different tree species. After two years of growth, the element concentrations in stem and leaf biomasses, tree survival rate and growth of plants were assessed. Although the three sites had elevat…
Poplar rotation coppice at a trace element-contaminated phytomanagement site: A 10-year study revealing biomass production, element export and impact on extractable elements
Abstract Growing lignocellulosic crops on marginal lands could compose a substantial proportion of future energy resources. The potential of poplar was explored, by devising a field trial of two hectares in 2007 in a metal-contaminated site to quantify the genotypic variation in the growth traits of 14 poplar genotypes grown in short-rotation coppice and to assess element transfer and export by individual genotypes. Our data led us to conclusions about the genotypic variations in poplar growth on a moderately contaminated site, with the Vesten genotype being the most productive. This genotype also accumulated the least amounts of trace elements, whereas the Trichobel genotype accumulated up…
Environmental metabarcoding reveals contrasting microbial communities at two poplar phytomanagement sites
The aim of the present study is to deepen the current understanding of the microbial communities at two poplar phytomanagement sites to reveal the environmental factors that drive the abundance, diversity and composition of microbial communities. A soil analysis revealed that the two soils displayed contrasting physico-chemical characteristics, with significant lower pH and higher Cd, Zn and Mn CaCl2-extractable fractions at Leforest site, compared with Pierrelaye site. The fungal and bacterial community profiles in the poplar roots and soils were assessed through Illumina MiSeq sequencing. Diversity indices and β-diversity measures illustrated that the root microbial communities were well …
Diversity and complexity of microbial communities from a chlor-alkali tailings dump
Abstract Revegetation of the tailings dumps produced by various industrial activities is necessary to prevent dust storms and erosion and represents a great challenge for ecological restoration. Little is known about the microbial colonisation and community structure of revegetated tailings following site exploitation. Here, we report the sequencing of 16S rRNA and internal transcribed spacer (ITS) fungal RNA gene amplicons from chlor-alkali residue and from an adjacent undisturbed soil to define the composition and assembly of the rhizosphere microbial communities. After quality filtering, a total of 72,373 and 89,929 bacterial sequences and 122,618 and 111,209 fungal sequences remained fo…
Interactions between dark septate endophytes, ectomycorrhizal fungi and root pathogens in vitro
ABSTRACT Dark septate endophytes (DSEs) are widely distributed worldwide and can promote plant growth. Therefore, they are considered potentially important plant allies, especially in stressful environments. Previous studies have reported that DSEs cohabit roots with other microorganisms such as ectomycorrhizal (ECM), endophytic and pathogenic fungi/oomycetes. However, interactions between different DSE species have not yet been reported, and studies on the interactions between DSEs and other fungi are scarce. Using a simple and reproducible pairwise growth assay in vitro, we studied the synergistic/antagonistic interactions between eight DSEs, two ECM fungi and three root pathogens. Most o…
Identification of new hardy ferns that preferentially accumulate light rare earth elements: a conserved trait within fern species
Environmental contextRare earth elements (REEs) are strategic metals and emerging contaminants for which plant-based remediation measures are needed. We screened a collection of hardy ferns and identified new accumulator species that preferentially transferred light REEs to their fronds. This study is an important step towards understanding the mechanisms of REE accumulation in plants. AbstractRare earth elements (REEs) include the lanthanides plus yttrium and scandium, and can be split according to their atomic mass into light (LREEs) and heavy REEs (HREEs). The increasing demand for REEs is mainly driven by new technologies, and their current low recyclability has led them to become emer…
Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites
Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium st…
Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site
Despite a long history of use in phytomanagement strategies, the impacts of poplar trees on the structure and function of microbial communities that live in the soil remain largely unknown. The current study combined fungal and bacterial community analyses from different management regimes using Illumina-based sequencing with soil analysis. The poplar phytomanagement regimes led to a significant increase in soil fertility and a decreased bioavailability of Zn and Cd, in concert with changes in the microbial communities. The most notable changes in the relative abundance of taxa and operational taxonomic units unsurprisingly indicated that root and soil constitute distinct ecological microbi…
Combined omics approaches reveal distinct responses between light and heavy rare earth elements in Saccharomyces cerevisiae
International audience; The rapid development of green energy sources and new medical technologies contributes to the increased exploitation of rare earth elements (REEs). They can be subdivided into light (LREEs) and heavy (HREEs) REEs. Mining, industrial processing, and end-use practices of REEs has led to elevated environmental concentrations and raises concerns about their toxicity to organisms and their impact on ecosystems. REE toxicity has been reported, but its precise underlying molecular effects have not been well described. Here, transcriptomic and proteomic approaches were combined to decipher the molecular responses of the model organism Saccharomyces cerevisiae to La (LREE) an…
Inhabiting plant roots, nematodes, and truffles—polyphilus, a new helotialean genus with two globally distributed species
Fungal root endophytes, including the common group of dark septate endophytes (DSEs), represent different taxonomic groups and potentially diverse life strategies. In this study, we investigated two unidentified helotialean lineages found previously in a study of DSE fungi of semiarid grasslands, from several other sites, and collected recently from a pezizalean truffle ascoma and eggs of the cereal cyst nematode Heterodera filipjevi. The taxonomic positions and phylogenetic relationships of 21 isolates with different hosts and geographic origins were studied in detail. Four loci, namely, nuc rDNA ITS1-5.8S-ITS2 (internal transcribed spacer [ITS]), partial 28S nuc rDNA (28S), partial 18S nu…
Effect of mycorrhizal inoculation on metal accumulation by poplar leaves at phytomanaged sites
Abstract Phytotechnologies for the management of lands contaminated with potentially toxic elements (PTEs) are considered as gentle alternatives to conventional remediation techniques. During the last few years, phytotechnologies have progressively shifted to phytomanagement, a concept that includes the valorization of the plant biomass produced on the contaminated site. This study aimed at evaluating the mid-term effect of ecto- and endomycorrhizal inoculation on the reduction of PTE mobility in soils and foliar accumulation by two poplar clones, Skado ( Populus trichocarpa x P. maximowiczii ) and I-214 ( P. deltoides x P. nigra ), dedicated to bioenergy purposes. The effects of inoculatio…
Bacterial diversity associated with poplar trees grown on a Hg-contaminated site: Community characterization and isolation of Hg-resistant plant growth-promoting bacteria
International audience; Industrial waste dumps are rarely colonized by vegetation after they have been abandoned, indicating biological infertility. Revegetation of industrial tailings dumps is thus necessary to prevent wind erosion, metal leaching and has been shown to restore soil functions and ecosystem services. However, little is known about the microbial colonization and community structure of vegetated tailings following the application of restoration technologies. In this study, we investigated the rhizosphere and phyllosphere bacterial communities of a poplar tree plantation within a phytomanagement-based restoration program of a Hg-contaminated site. We used Illumina-based sequenc…
Inhabiting plant roots, nematodes, and truffles—Polyphilus, a new helotialean genus with two globally distributed species
Fungal root endophytes, including the common group of dark septate endophytes (DSEs), represent different taxonomic groups and potentially diverse life strategies. In this study, we investigated two unidentified helotialean lineages found previously in a study of DSE fungi of semiarid grasslands, from several other sites, and collected recently from a pezizalean truffle ascoma and eggs of the cereal cyst nematode Heterodera filipjevi. The taxonomic positions and phylogenetic relationships of 21 isolates with different hosts and geographic origins were studied in detail. Four loci, namely, nuc rDNA ITS1-5.8S-ITS2 (internal transcribed spacer [ITS]), partial 28S nuc rDNA (28S), partial 18S nu…