0000000000117440

AUTHOR

Vincent Meunier

Nonlinear photon-assisted tunneling transport in optical gap antennas.

International audience; We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.

research product

A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons

Graphene nanoribbons (GNRs) have attracted considerable interest as their atomically tunable structure makes them promising candidates for future electronic devices. However, obtaining detailed information about the length of GNRs has been challenging and typically relies on low-temperature scanning tunneling microscopy. Such methods are ill-suited for practical device application and characterization. In contrast, Raman spectroscopy is a sensitive method for the characterization of GNRs, in particular for investigating their width and structure. Here, we report on a length-dependent, Raman active low-energy vibrational mode that is present in atomically precise, bottom-up synthesized armch…

research product

Optimized substrates and measurement approaches for Raman spectroscopy of graphene nanoribbons

The on-surface synthesis of graphene nanoribbons (GNRs) allows for the fabrication of atomically precise narrow GNRs. Despite their exceptional properties which can be tuned by ribbon width and edge structure, significant challenges remain for GNR processing and characterization. In this contribution, we use Raman spectroscopy to characterize different types of GNRs on their growth substrate and to track their quality upon substrate transfer. We present a Raman-optimized (RO) device substrate and an optimized mapping approach that allows for acquisition of high-resolution Raman spectra, achieving enhancement factors as high as 120 with respect to signals measured on standard SiO2/Si substra…

research product