Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials
International audience; Direct information about fluids under supercritical water conditions is unfeasible due to the engineering restrictions at high pressure and high temperature. Numerical investigations based on computational fluid dynamics (CFD) calculations are widely used in order to get extensive information on the fluid behavior, particularly to help the design of a new reactor. This paper presents the numerical investigations performed on an original supercritical water device, especially in the level of the reactor. CFD calculations allow to design and optimize the present reactor described in this study. Currently, this process produces some nanometric oxide powders in continuou…
Influence of the pH on the ZnO nanoparticle growth in supercritical water: Experimental and simulation approaches
Abstract In order to improve the knowledge on the nucleation and the growth mechanisms of metal oxides nanoparticles produced in supercritical water domain, ZnO was used as a “model” material. A continuous process of hydrothermal synthesis was employed to synthesize ZnO nanopowders ( T = 410 °C and P = 305 bar) from Zn(NO 3 ) 2 and KOH solutions with different values of [KOH]/[Zn(II)] ratio from 0 to 8 in order to investigate the pH effect on the growth of ZnO nanocrystallite in terms of size and morphology. The samples were characterized by X-Ray Diffraction and Transmission Electronic Microscopy. ZnO crystal was considered as a cylindrical crystallite with a diameter D and height H . Es…
CFD simulation of ZnO nanoparticle precipitation in a supercritical water synthesis reactor
International audience; Continuous hydrothermal flow synthesis process has shown great advantages concerning the control of particle size and morphology through the optimization of supercritical water processing parameters. In particular, micromixing is a key issue of the process for controlling the nucleation mechanism. A Computational Fluid Dynamics (CFD) model is suggested for nanoparticle size determination using a population balance approach. Models for reaction kinetics, thermodynamics, nucleation and growth are presented. The effects of base concentration and hydrodynamics are investigated. Results show that the CFD may be valuable simulation tool for controlling the size and the sha…