0000000000117751
AUTHOR
A. Preite Martinez
MULTI-SCALE ANALYSIS OF LUNG COMPUTED TOMOGRAPHY IMAGES
A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.
Automated detection of lung nodules in low-dose computed tomography
A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low…
Preprocessing methods for nodule detection in lung CT
Abstract The use of automatic systems in the analysis of medical images has proven to be very useful to radiologists, especially in the framework of screening programs, in which radiologists make their first diagnosis on the basis of images only, most of those corresponding to healthy patients, and have to distinguish pathological findings from non-pathological ones at an early stage. In particular, we are developing preprocessing methods to be applied for pulmonary nodule Computer Aided Detection in low-dose lung Multi Slice CT (computed tomography) images.
Dissimilarity Application in Digitized Mammographic Images Classification.
Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the traditional way of learning from examples of objects the classifiers are built in a feature space. However, an alternative ways can be found by constructing decision rules on dissimilarity (distance) representations. In such a recognition process a new object is described by its distances to (a subset of) the training samples. The use of the dissimilarities is especially of interest when features are difficult to obtain or when they have a little discrim…
Dissimilarity Application for Medical Imaging Classification
In the traditional way of learning from examples of objects the classifiers are built in a feature space. However, alternative ways can be found by constructing decision rules on dissimilarity (distance) representations. In such a recognition process a new object is described by its distances to (a subset of) die training samples. The use of the dissimilarities is especially of interest when features are difficult to obtain or when they have a little discriminative power. Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 col…