0000000000117773

AUTHOR

Michael J. Bearpark

0000-0002-1117-7536

Modelling Photoionisation in Isocytosine: Potential Formation of Longer‐Lived Excited State Cations in its Keto Form

Abstract Studying the effects of UV and VUV radiation on non‐canonical DNA/RNA nucleobases allows us to compare how they release excess energy following absorption with respect to their canonical counterparts. This has attracted much research attention in recent years because of its likely influence on the origin of our genetic lexicon in prebiotic times. Here we present a CASSCF and XMS‐CASPT2 theoretical study of the photoionisation of non‐canonical pyrimidine nucleobase isocytosine in both its keto and enol tautomeric forms. We analyse their lowest energy cationic excited states including 2π+ , 2nO+ and 2nN+ and compare these to the corresponding electronic states in cytosine. Investigat…

research product

Modelling Photoionisations in Tautomeric DNA Nucleobase Derivatives 7H-Adenine and 7H-Guanine: Ultrafast Decay and Photostability

The study of radiation effects in DNA is a multidisciplinary endeavour, connecting the physical, chemical and biological sciences. Despite being mostly filtered by the ozone layer, sunlight radiation is still expected to (photo)ionise DNA in sizeable yields, triggering an electron removal process and the formation of potentially reactive cationic species. In this manuscript, photoionisation decay channels of important DNA tautomeric derivatives, 7H-adenine and 7H-guanine, are characterised with accurate CASSCF/XMS-CASPT2 theoretical methods. These simulation techniques place the onset of ionisation for 7H-adenine and 7H-guanine on average at 8.98 and 8.43 eV, in line with recorded experimen…

research product

Front Cover: Modelling Photoionisation in Isocytosine: Potential Formation of Longer‐Lived Excited State Cations in its Keto Form (ChemPhysChem 21/2021)

research product

Modelling Photoionisation in Isocytosine: Potential Formation of Longer‐Lived Excited State Cations in its Keto Form

The front cover artwork is provided by Dr. Javier Segarra-Martí (University of Valencia, Spain) and Prof. Michael J. Bearpark (Imperial College London, UK). The image shows the ultrafast photoionisation of DNA canonical nucleobase cytosine and the slower ionization process in non-canonical base isocytosine embedded within a DNA backbone. Read the full text of the Article at 10.1002/cphc.202100402.

research product

Molecular excited state calculations with adaptive wavefunctions on a quantum eigensolver emulation: reducing circuit depth and separating spin states

Ab initio electronic excited state calculations are necessary for the quantitative study of photochemical reactions, but their accurate computation on classical computers is plagued by prohibitive resource scaling. The Variational Quantum Deflation (VQD) is an extension of the quantum-classical Variational Quantum Eigensolver (VQE) algorithm for calculating electronic excited state energies, and has the potential to address some of these scaling challenges using quantum computers. However, quantum computers available in the near term can only support a limited number of quantum circuit operations, so reducing the quantum computational cost in VQD methods is critical to their realisation. In…

research product

3-Methylation alters excited state decay in photoionised uracil.

UV and VUV-induced processes in DNA/RNA nucleobases are central to understand photo-damaging and photo-protecting mechanisms in our genetic material. Here we model the events following photoionisation and electronic excitation in uracil, methylated in the 1′ and 3′ positions, using the correlated XMS-CASPT2 method. We compare our results against those for uracil and 5-methyl-uracil (thymine) previously published. We find 3-methylation, an epigenetic modification in non-negligible amounts, shows the largest differences in photoionised decay of all three derivatives studied compared to uracil itself. At the S0 minimum, 3-methyl-uracil (3mUra) shows almost degenerate excited cation states. Upo…

research product