0000000000118081

AUTHOR

Simone Bircher

showing 3 related works from this author

Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

2017

International audience; The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real time) and provides 3-hourly, global, 9-km resolution estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach, and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root zone) soil m…

Atmospheric Science010504 meteorology & atmospheric sciences0208 environmental biotechnologyDrainage basin[SDU.STU]Sciences of the Universe [physics]/Earth SciencesSoil science02 engineering and technologyLand cover01 natural sciencesStandard deviationITC-HYBRIDData assimilationSoil temperatureWater content0105 earth and related environmental sciencesgeographygeography.geographical_feature_category020801 environmental engineeringSatellite observations[SDU]Sciences of the Universe [physics]Brightness temperatureITC-ISI-JOURNAL-ARTICLEData assimilationDNS root zoneEnvironmental scienceSoil moistureLand surface modelScale (map)Kalman filtersJournal of hydrometeorology
researchProduct

Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field

2014

International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…

010504 meteorology & atmospheric sciencesMean squared errorMeteorology[SDE.MCG]Environmental Sciences/Global Changes0211 other engineering and technologiesSoil Science02 engineering and technologyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesPhysics::Geophysics14. Life underwaterComputers in Earth SciencesTime series021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingAtmospheric soundingValencia Anchor StationRadiometerGeologyInversion (meteorology)SMAP15. Life on landBrightness temperatureSoil waterEnvironmental scienceRadiometrySoil moisture retrievalELBARA[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingSMOSRemote Sensing of Environment
researchProduct

Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA

2014

The Soil Moisture and Ocean Salinity (SMOS) mission provides multi-angular, dual-polarised brightness temperatures at 1.4 GHz, from which global soil moisture and vegetation optical depth (tau) products are retrieved. This paper presents a study of SMOS' tau product in 2010 and 2011 for crop zones of the USA. Retrieved tau values for 504 crop nodes were compared to optical/IR vegetation indices from the MODES (Moderate Resolution Imaging Spectroradiometer) satellite sensor, including the Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVE), Leaf Area Index (LAI), and a Normalised Difference Water Index (NOW!) product. tau values were observed to increase during the…

2. Zero hunger010504 meteorology & atmospheric sciences0211 other engineering and technologiesSoil ScienceGrowing seasonGeology02 engineering and technologyVegetationEnhanced vegetation index01 natural sciencesNormalized Difference Vegetation Indexvegetation optical depthLinear regressionEnvironmental scienceL-band radiometryModerate-resolution imaging spectroradiometerComputers in Earth SciencesLeaf area indexoptical vegetation indices[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingWater contentSMOS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct