0000000000118090
AUTHOR
John S. Kimball
Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements
International audience; The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real time) and provides 3-hourly, global, 9-km resolution estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach, and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root zone) soil m…
Down-Scaling Modis Vegetation Products with Landsat GAP Filled Surface Reflectance in Google Earth Engine
High spatial resolution vegetation products are fundamental in different fields, such as improving the understanding of crop seasonality at regional scales. Here, two new vegetation products such as the Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are downscaled at continental scales. A novel HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HIS-TARFM) is used to generate the gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectance for the contiguous United States. An artificial neural network is trained to capture the relationship between the gap free Landsat surface reflectance and the MODI…
Global Upscaling of the MODIS Land Cover with Google Earth Engine and Landsat Data
Image classification has become one of the most common applications in remote sensing yielding to the creation of a variety of operational thematic maps at multiple spatio-temporal scales. The information contained in these maps summarizes key characteristics related with the physical environment and provides fundamental information of the Earth for vegetation monitoring or land use status over time. However, high spatial resolution land cover maps are usually only produced for specific small regions or in an image tile. We present a general methodology to obtain a high spatial resolution land cover maps using Landsat spectral information, the powerful Google Earth Engine platform, and oper…