0000000000118216

AUTHOR

Siti Arpah Ahmad

Relativistic J-dependence of the isotope shift in the 6s-6p doublet of Ba II

The collinear laser-ion beam technique has been used to measure the isotope shift and hyperfine structure in the 6s-6p doublet (4,934A, 4,554A) of Ba II for all seven stable isotopes. The influence of the excited2P1/2 and2P3/2 states on the field shift leads to a difference of 2.5(3)% in the electronicF factors. The specific mass shifts differ by {A′-A} 2.2(3) MHz which corresponds to about 12% of the normal mass shift.

research product

Hyperfine structure and isotope shift of the neutron-rich barium isotopes139?146Ba and148Ba

The hyperfme structure and isotope shift in the 6s 2 S 1/2−6p 2P3/2 line of Ba II (455.4 nm) have been measured by collinear fast-beam laser spectroscopy for the neutron-rich isotopes139–146Ba and148Ba. Nuclear moments and mean square charge radii of these isotopes have been recalculated. The isotope shift of the isotope148Ba (T1/2=0.64 s) could be studied for the first time, yieldingδ〈r2〉138,148=1.245(3) fm2.

research product

Isotope shift of182Hg and an update of nuclear moments and charge radii in the isotope range181Hg-206Hg

The technique of collinear fast-beam laser spectroscopy has been used to measure the isotope shifts of the even-even isotopes of Hg (Z=80) in the mass range 182≤A≤198 at the on-line mass separator ISOLDE at CERN. The atomic transition studied (6s 6p 3 P 2- 6s7s 3 S 1,λ=546.1 nm) starts from a metastable state, which is populated in a quasi resonant charge transfer process. The resulting changes in nuclear mean square charge radii show clearly that182Hg follows the trend of the heavier, even, weakly oblate isotopes. Correspondingly the huge odd-even shape staggering in the light Hg isotopes continues and the nuclear shape staggering and shape coexistence persists down to the last isotope inv…

research product

Nuclear moments and charge radii of rare-earth isotopes studied by collinear fast-beam laser spectroscopy

The collinear fast-beam laser technique is being used to measure systematically hyperfine structures and isotope shifts of unstable nuclides in the rare-earth region. This brief report gives a general survey of the results obtained for the even-Z elements64Gd,66Dy,68Er and70Yb, with emphasis on the nuclear spins and moments. They allow a rather complete mapping of the single-particle structure and the development of nuclear deformation in the N > 82 region. The spins, magnetic moments and spectroscopic quadrupole moments of159–169Yb are presented in detail.

research product

Determination of nuclear spins and moments in a series of radium isotopes

Abstract The first investigation of hyperfine structure in radium isotopes has enabled the determination of nuclear spins, magnetic dipole and electric quadrupole moments of the isotopes with mass numbers A = 211, 213, 221, 223, 225, 227 and 229. Isotope shifts in the mass range A = 208−232 have also been measured. These studies were carried out using the technique of on-line collinear fast beam laser spectroscopy.

research product

Nuclear spins, moments, and changes of the mean square charge radii of sup.(140-153)Eu

The hyperfine structures and isotope shifts of 14 isotopes of Eu (Z=63) in the mass range 140≦A≦153, partly with isomeric states, have been measured in the atomic transitions at 4,594 A and 4,627 A, using the technique of collinear fast-beam laser spectroscopy at the ISOLDE facility at CERN. The nuclear spins, the magnetic dipole and electric quadrupole moments, and the changes in the mean square charge radii have been evaluated. These nuclear parameters clearly reflect the effects of theN=82 neutron-shell closure in the single-proton hole states with respect to the semi-magic gadolinium (Z=64), and theN=88−90 shape transition.

research product

Nuclear Magnetic Moment ofTl207

The magnetic moment 1.876(5)${\mathrm{\ensuremath{\mu}}}_{\mathit{N}}$ of 4.77-min $^{207}\mathrm{Tl}$, the only heavy nucleus with a doubly magic core plus a single ${s}_{\frac{1}{2}}$ particle or hole, was measured from the hfs by collinear fast-beam laser spectroscopy at ISOLDE (isotope separator at the CERN synchrotron). The result is of theoretical importance as a test case for core polarization since the nuclear structure is relatively simple and the orbital part of the magnetic moment, including strong pion-exchange contribution, is expected to be zero.

research product