0000000000118895

AUTHOR

A. Herzán

Isomeric 13/2+ state in 201Fr

We have identified an isomeric state in 201Fr for which we propose a spin and parity of 13/2 +, and interpret it as arising from the π(i13/2 ) configuration. A half-life of 720(40) ns was measured, corresponding to B(M2) = 0.17(2) W.u., in good agreement with those of other 13/2 + → 9/2 − [π(i13/2 ) → π(h9/2 )] transitions observed in other nuclei in the region. The nuclei of interest were produced in a fusion-evaporation reaction and their decay properties were investigated using the GREAT spectrometer at the focal plane of the RITU gas-filled recoil separator. peerReviewed

research product

Decay of a 19− isomeric state in 156Lu

A multiparticle spin-trap isomeric state having a half-life of 179(4) ns and lying 2601 keV above the yrast 10 + state in 156 Lu has been discovered. The 156 Lu nuclei were produced by bombarding isotopically enriched 106 Cd targets with beams of 58 Ni ions, separated in flight using the gas-filled separator RITU and their decays were measured using the GREAT spectrometer. Analysis of the main decay path that populates yrast states observed previously suggests a spin-parity assignment of 19 − for the isomeric state, which is consistent with isomeric states identified in the N = 85 isotones. Comparison with other decay paths in 156 Lu indicates that the [ π h − 1 11 / 2 ⊗ ν h 9 / 2 ] 10 + st…

research product

Evolution from γ-soft to stable triaxiality in 136Nd as a prerequisite of chirality

The level structure of 136Nd has been investigated using the 100Mo(40Ar, 4n) reaction and the JUROGAM II+RITU+GREAT setup. The level scheme has been extended significantly. Many new bands have been identified both at low and high spin, among which are five nearly degenerate bands interpreted as chiral partners. Excitation energies, spins, and parities of the previously known bands are revised and firmly established, and some previously known bands have been revised. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinsky calculations. The band structure of 136Nd is now clarified and the various types of single-particle and collective excitations are well unders…

research product

α-decay spectroscopy of the N = 130 isotones 218Ra and 220Th: Mitigation of α-particle energy summing with implanted nuclei

An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones 218Ra (Z=88) and 220Th (Z=90) has been performed. The energies of the α particles emitted in the 218Ra→214Rn and 220Th→216Ra ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of 218Ra and 220Th have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, 214Rn and 216Ra, have been measured to be 259(3) ns and …

research product