0000000000119564
AUTHOR
B Cadier
Influence of specific codopants and post-treatments on Erbium Doped Fibers: Radiation behavior characteristics by CML
Role of Ce3+ as sensitizer for the infrared luminescence of phosphosilicate Er/Yb doped glasses
The luminescence properties of the Yb/Er-doped phosphosilicate preforms used for the design of active optical fibers were investigated under a tunable laser excitation from ultraviolet to infrared domain. We demonstrated that codoping the glass matrix with Ce3+ ions strongly influences the infrared emission associated with Er3+ ions, it enhances the energy transfer from Yb3+ to Er3+ ions, and it provides an additional ultraviolet excitation channel for the emission of both Yb3+ and Er3+ ions. The excitation/emission pathways are discussed on the basis of models proposed in literature for other systems.
Radiation hardening of Rare-Earth doped fiber amplifiers
We investigated the radiation hardening of optical fiber amplifiers operating in space environments. Through a real-time analysis in active configuration, we evaluated the role of Ce in the improvement of the amplifier performance against ionizing radiations. Ce-codoping is an efficient hardening solution, acting both in the limitation of defects in the host glass matrix of RE-doped optical fibers and in the stabilization of lasing properties of the Er3+-ions. On the one hand, in the nearinfrared region, radiation induced attenuation measurements show the absence of radiation induced P-related defect species in host glass matrix of the Ce-codoped active fibers; on the other hand, in the Ce-…