0000000000120511

AUTHOR

M. Chapellier

Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology

We report the measurement of the two-neutrino double-beta (2 νββ) decay of 100Mo to the ground state of 100Ru using lithium molybdate (Li2100MoO4) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg× day, the half-life of 100Mo is determined to be T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the most accurate determination of the 2 νββ half-life of 100Mo to date.

research product

Precise measurement of $$2\nu \beta \beta $$ 2νββ decay of $$^{100}$$ 100 Mo with the CUPID-Mo detection technology

We report the measurement of the two-neutrino double-beta ($$2\nu \beta \beta $$ 2νββ ) decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru using lithium molybdate ($$\hbox {Li}_2^{\;\;100}\hbox {MoO}_4$$ Li2100MoO4 ) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg$$\times $$ × day, the half-life of $$^{100}$$ 100 Mo is determined to be $$T_{1/2}^{2\nu }=[7.12^{+0.18}_{-0.14}\,\mathrm {(stat.)}\pm 0.10\,\mathrm {(syst.)}]\times 10^{18}$$ T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the mo…

research product

Interpretation of the Anomalous NaI Events

Anomalous events, with scintillation decay times shorter than nuclear recoils, have been observed by the UKDMC and Saclay NaI experiments. By using the event categories observed in the EDELWEISS experiment, we propose to interpret the anomalous NaI events as surface nuclear recoils accompanied with a small energy loss of an escaping alpha particle. The discrimination performances of the NaI experiments which have not taken into account these events in their analysis, notably for axial WIMP interactions, must then be reevaluated.

research product

Precise measurement of $2\nu\beta\beta$ decay of $^{100}$Mo with the CUPID-Mo detection technology

We report the measurement of the two-neutrino double-beta ($2\nu\beta\beta$) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (\crystal) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory. From a total exposure of $42.235$ kg$\times$d, the half-life of $^{100}$Mo is determined to be $T_{1/2}^{2\nu}=[7.12^{+0.18}_{-0.14}\,\mathrm{(stat.)}\pm0.10\,\mathrm{(syst.)}]\times10^{18}$ years. This is the most accurate determination of the $2\nu\beta\beta$ half-life of $^{100}$Mo to date. We also confirm, with the statistical significance of $>3\sigm…

research product

Status of the EDELWEISS experiment

The Edelweiss Dark Matter Experiment is installed in the Modane Underground Laboratory since 1994. In 1997 the first detector of a 70 g heat and ionization Ge low-temperature detector built by the collaboration showed its discrimination capabilities. During the last two years the installation was upgraded, and a new generation of 70 g Ge detectors is operational. The detector environment is drastically controlled to avoid radioactive contamination. A test run with two new 70 g detectors shows a reduction by a factor of ten in the background level before 7-ray rejection which is now around 2 events/kg/keV/day. Three 320 g Ge cryogenic detectors have been constructed and are now being tested …

research product

Background discrimination capabilities of a heat and ionization germanium cryogenic detector

The discrimination capabilities of a 70 g heat and ionization Ge bolometer are studied. This first prototype has been used by the EDELWEISS Dark Matter experiment, installed in the Laboratoire Souterrain de Modane, for direct detection of WIMPs. Gamma and neutron calibrations demonstrate that this type of detector is able to reject more than 99.6% of the background while retaining 95% of the signal, provided that the background events distribution is not biased towards the surface of the Ge crystal. However, the 1.17 kg.day of data taken in a relatively important radioactive environment show an extra population slightly overlapping the signal. This background is likely due to interactions o…

research product