0000000000121374

AUTHOR

Pietro Tabbuso

showing 28 related works from this author

Optimal Design of New Steel Connections

2018

The Limited Resistance Rigid Perfectly Plastic Hinge (LRPH) are special steel connections mainly usable to join beam elements of plane or spatial steel frames. The fundamental characteristics of these devices are the mutual independence of their own resistance and stiffness features as well as the respect of assigned constraints related to the elastic and limit behaviour of the joined elements. Within the frame structural scheme, the device plays the role of a rigid perfectly plastic hinge, constituted by a suitably sized sandwich section. The efficient use of the LRPH in the relevant frame depends on the appropriate design of the device geometry. In the present paper, a new approach devote…

Optimal designComputer sciencebusiness.industryPlane (geometry)Frame (networking)StiffnessStructural engineeringUSableFinite element methodPlastic hingemedicinemedicine.symptombusinessBeam (structure)
researchProduct

Probabilistic Evaluation of the Adaptation Time for Structures under Seismic Loads

2016

Abstract In this paper, a probabilistic approach for the evaluation of the adaptation time for elastic perfectly plastic frames is proposed. The considered load history acting on the structure is defined as a suitable combination of quasi-statical loads and seismic actions. The proposed approach utilizes the Monte Carlo method in order to generate a suitable large number of seismic acceleration histories and for each one the related load combination is defined. Furthermore, for each load combination the related adaptation time is determined, if any, as the optimal one for which the structure is able to shakedown under the unamplified applied actions. A known generalized Ceradini's theorem i…

probabilistic approachEngineeringMonte Carlo methodStructure (category theory)seismic loading020101 civil engineeringProbability density function02 engineering and technology0201 civil engineeringAccelerationEngineering (all)0203 mechanical engineeringAdaptation (computer science)Engineering(all)adaptation time; Dynamic shakedown; probabilistic approach; seismic loading; Engineering (all)Dynamic shakedownbusiness.industrySeismic loadingProbabilistic logicGeneral MedicineStructural engineeringShakedown020303 mechanical engineering & transportsadaptation timebusinessSettore ICAR/08 - Scienza Delle CostruzioniAlgorithm
researchProduct

Optimal design of steel frames accounting for buckling

2013

A formulation of a special design problem devoted to elastic perfectly plastic steel frame structures subjected to different combinations of static and dynamic loads is presented. In particular, a minimum volume design problem formulation is presented and the structure is designed to be able to elastically behave for the assigned fixed loads, to elastically shakedown in presence of serviceability load conditions and to prevent the instantaneous collapse for suitably chosen combinations of fixed and ultimate seismic loadings as well as of fixed and wind actions. The actions that the structure must suffer are evaluated by making reference to the actual Italian seismic code. The dynamic respon…

Optimal designOptimization problemServiceability (structure)Computer sciencebusiness.industryMechanical EngineeringP-Delta EffectStructural engineeringCondensed Matter PhysicsShakedownModalOptimal design Steel frames Dynamic loads Buckling P-Delta effect.Flexural strengthBucklingMechanics of MaterialsSettore ICAR/08 - Scienza Delle CostruzionibusinessMeccanica
researchProduct

Multicriterion design of frames with constraints on buckling

2011

The present paper is devoted to the optimal design of frame structures subjected to static and dynamic loading assuming the material behaviour as elastic perfectly plastic. The relevant optimal design problem is formulated as a minimum volume search problem. The minimum volume structure is determined under suitable constraints on the design variables as well as accounting for different resistance limits: the elastic shakedown limit and the instantaneous collapse limit, considering for each limit condition suitably chosen amplified load combinations. The effects of the dynamic actions are studied on the grounds of the dynamic features of the structure taking into account the structural perio…

Settore ICAR/08 - Scienza Delle CostruzioniOptimal design dynamic loading buckling.
researchProduct

Seismic shakedown design of frames based on a probabilistic approach

2014

The present study concerns the optimal design of elastic perfectly plastic structures subjected to a combination of fixed and seismic loads. In particular, plane frames are considered and suitable measures of the beam element cross sections are chosen as design variables. The optimal design is required to behave in a purely elastic manner when subjected just to the fixed load and to have the capability to eventually shakedown when simultaneously subjected to fixed and seismic loads. Due to the natural uncertainness related to the definition of the seismic load history, a new probabilistic approach is proposed, consisting into two subsequent search steps. At first a suitably chosen large num…

Optimal designbusiness.industryPlane (geometry)Seismic loadingProbabilistic logicElastic energyProbabilistic approachStructural engineeringFunction (mathematics)Shakedown behaviour.ShakedownSeismic loadingMinimum volume designbusinessSettore ICAR/08 - Scienza Delle CostruzioniBeam (structure)Mathematics
researchProduct

Dynamic Shakedown Sensitivity Analysis by Means of a Probabilistic Approach

2017

The shakedown limit load multiplier problem for elastic plastic structures subjected to a combination of fixed and seismic loads is treated. In particular, reference is firstly made to the unrestricted dynamic shakedown theory. The relevant seismic load history is modeled as a repeated one and, with reference to classically damped structures, appropriate modal analyses are utilized. With the aim of evaluating the reliability of the results arising from the application of the cited theory, a recent probabilistic approach is also utilized. This approach adopts the Monte Carlo method in order to define the necessary seismic acceleration histories and finally compute the related shakedown limit…

business.industryCumulative distribution functionSeismic loadingMonte Carlo method0211 other engineering and technologiesComputational MechanicsProbabilistic logic02 engineering and technologyBuilding and ConstructionStructural engineeringShakedown020303 mechanical engineering & transportsModal0203 mechanical engineeringMechanics of MaterialsArchitectureLimit loadMultiplier (economics)Safety Risk Reliability and Qualitybusiness021106 design practice & managementCivil and Structural EngineeringMathematicsInternational Review of Civil Engineering (IRECE)
researchProduct

On the Post-Elastic Behavior of LRPH Connections

2019

The paper concerns the study of the post-elastic behavior of a recently proposed innovative device, named Limited Resistance Rigid Perfectly Plastic Hinge (LRPH). In particular, LRPH is a steel device of finite length realizing a moment connection between beam elements of a steel frame; it is designed in order to possess two main and independent requirements: its bending moment resistance must be suitably lower than the one of the connected beam element and its overall bending stiffness must be equal to that of the connected beam element characterized by the same length. In order to make the proposed device reliable, LRPH must be capable of realizing a full plastic hinge for the assigned be…

Optimization problemComputer sciencebusiness.industryMechanical EngineeringGeneral Chemical EngineeringStructural engineeringUpper and lower boundsFinite element methodMoment (mathematics)Modeling and SimulationBending stiffnessPlastic hingeBending momentElectrical and Electronic EngineeringSettore ICAR/08 - Scienza Delle CostruzionibusinessBeam (structure)FEM Analysis LRPH Device Optimal Design Post-Elastic Behavior Steel ConnectionInternational Review on Modelling and Simulations (IREMOS)
researchProduct

Comparison between unrestricted dynamic shakedown design and a new probabilistic approach for structures under seismic loadings

2014

The paper concerns a study related to the comparison between two different approaches utilized for the formulation of an optimal shakedown design problem for elastic plastic frame structures subjected to a combination of fixed and seismic loading. The first formulation utilizes the unrestricted dynamic shakedown theory, while the second one is based on a new probabilistic approach. The comparison is effected in terms of mathematical formulations, in terms of adopted loading models and in terms of numerical results. The performed applications are related to plane steel frames.

optimal design unrestricted dynamic shakedown seismic loadings steel framebusiness.industryComputer scienceProbabilistic logicStructural engineeringSettore ICAR/08 - Scienza Delle CostruzionibusinessShakedown
researchProduct

Evaluation of the bending behaviour of laminated glass beams via electronic speckle pattern interferometry

2017

The paper is devoted to the experimental analysis of the kinematical and mechanical behaviour of laminated glass beam structures. In particular, the utilized laminated glass specimens are composed of two glass layers bonded by a polymer layer constituted by Ethylene-vinyl acetate whose thickness has been nominally considered as constant for all the specimens. The experimental behaviour of the analyzed specimens is deduced by applying Electronic Speckle- Pattern Interferometry technique; actually, among optical methods this technique (handled by phase-stepping technique) is very effective to obtain a full-field displacement map and to numerically achieve the longitudinal strain. In particula…

Bending behaviourThin layersMaterials scienceESPIInterlayerGeneral Chemical EngineeringExperimental analysiMechanical EngineeringEthylene-Vinyl Acetate (EVA)Laminated glaMultilayer beamBendingStress (mechanics)InterferometryEquivalent thickneElectronic speckle pattern interferometryModeling and SimulationPure bendingForensic engineeringChemical Engineering (all)Composite materialElectrical and Electronic EngineeringLaminated glassSettore ICAR/08 - Scienza Delle CostruzioniBeam (structure)
researchProduct

On the optimal design of base isolation devices

2013

The paper deals with the optimal design of a base isolation system for a given structure subjected to seismic loads. In particular, an appropriate minimum displacement seismic protection device optimal design formulation is proposed for an assigned elastic perfectly plastic steel frame constrained to behave in conditions of elastic shakedown. The chosen base isolation device is constituted by elastomeric isolators. Suitable combinations of fixed and seismic loads are considered. According to the unrestricted shakedown theory, the seismic input is given as any load history appertaining to a suitably defined seismic load admissibility domain. The relevant dynamic structural response is obtain…

Optimal design seismic loading base isolation devices.Settore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Discrete variable design of frames subjected to seismic actions accounting for element slenderness

2015

An optimal design problem formulation of elastic plastic frames under different combinations of fixed and seismic loads is presented. The optimal structure must behave elastically for the fixed loads, shakedown for serviceability conditions and prevent instantaneous collapse for fixed and high seismic loads. P-Delta effects and element buckling are considered. An appropriate modal technique is utilized. The design variables can have components in a continuous field or, alternatively, in chosen discrete sets or, yet, both kind of variables can be present. The design problem is formulated on the ground of a statical approach. The applications are related to steel frames.

Optimal designEngineeringServiceability (structure)business.industryMechanical EngineeringSeismic loadingStructural engineeringComputer Science ApplicationsShakedownModaldiscrete variables optimal design dynamic loading element buckling P-delta effectsBucklingDynamic loadingModeling and SimulationGeneral Materials ScienceDiscrete variablebusinessSettore ICAR/08 - Scienza Delle CostruzioniCivil and Structural Engineering
researchProduct

An efficient framework for the elasto-plastic reliability assessment of uncertain wind excited systems

2016

Abstract In this paper a method to efficiently evaluate the reliability of elastic-perfectly plastic structures is proposed. The method is based on combining dynamic shakedown theory with Subset Simulation. In particular, focus is on describing the shakedown behavior of uncertain elasto-plastic systems driven by stochastic wind loads. The ability of the structure to shakedown is assumed as a limit state separating plastic collapse from a safe, if not elastic, state of the structure. The limit state is therefore evaluated in terms of a probabilistic load multiplier estimated through solving a series of linear programming problems posed in terms of the responses of the underlying linear elast…

Subset Simulation.Mathematical optimizationLinear programmingLinear elasticityProbabilistic logicDynamic wind effect020101 civil engineering02 engineering and technologyBuilding and ConstructionWind loadReliability analysi0201 civil engineeringShakedown020303 mechanical engineering & transportsElasto-plastic structure0203 mechanical engineeringExcited stateSubset simulationMultiplier (economics)Limit state designSettore ICAR/08 - Scienza Delle CostruzioniSafety Risk Reliability and QualityDynamic shakedownCivil and Structural EngineeringMathematicsStructural Safety
researchProduct

Minimum volume design of structures with constraints on ductility and stability

2014

Abstract A minimum volume design problem of elastic perfectly plastic frame structures subjected to different combinations of fixed and seismic loads is presented, in which the design variables are considered as appertaining alternatively to a continuous assigned range as well as to appropriate discrete sets. The structure is designed so as to behave elastically for the applied fixed loads, to shakedown in presence of serviceability seismic conditions and to prevent the instantaneous collapse for suitably chosen combinations of fixed and high seismic loadings. In order to avoid further undesired collapse modes, the P-Delta effects are considered and the structure is also constrained to prev…

Optimal designOptimal designEngineeringServiceability (structure)business.industrySeismic loadingStructural engineeringShakedownSeismic loadingLimited ductilityModalBucklingContinuous and discrete variableElement slenderness.Settore ICAR/08 - Scienza Delle CostruzionibusinessResponse spectrumCivil and Structural EngineeringEngineering Structures
researchProduct

Minimum displacement design of base isolation devices

2014

Minimum displacement optimal design base isolation devicesSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Speckle Interferometry Analysis of Full-bending Behavior of GFRP Pultruded Material

2016

Abstract The use of Glass Fiber Reinforced Polymer materials (GFRP) has increased in the last years even among civil structural engineering due to their high specific strength, lightweight and excellent corrosion resistance. With application of the pultrusion method, the manufacture of large-scale profiles with various cross-section forms became potentially possible with relatively low costs. Usually two different technological approaches are available to realize the element: in the first one a mat-roving-mat sequence is adopted, in the second one only roving is present. Continuous filament mat (CFM, fibers distributed randomly in all directions) is often used to build up laminate thickness…

Digital image correlationDisplacement field maximumMaterials sciencefull-field analysisMechanical engineering02 engineering and technologyBendingSpeckle interferometrySpecific strength0203 mechanical engineeringEngineering(all)GFRP materialdisplacement field maximum; full-field analysis; GFRP materials; Speckle interferometry; Engineering (all)full-field analysibusiness.industryGeneral MedicineStructural engineeringFibre-reinforced plastic021001 nanoscience & nanotechnologyInterferometrySettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsPultrusionMacroscopic scaledisplacement field maximum ;Speckle imagingSettore ICAR/08 - Scienza Delle CostruzioniGFRP materials0210 nano-technologybusinessProcedia Engineering
researchProduct

Reliability-based design optimization of trusses under dynamic shakedown constraints

2019

A reliability-based design optimization problem under dynamic shakedown constraints for elastic perfectly plastic truss structures subjected to stochastic wind actions is presented. The simultaneous presence of quasi-static (cyclic) thermal loads is also considered. As usual in the shakedown theory, the quasi-statical loads will be defined as variable within a deterministic domain, while the dynamic problem will be treated considering an extended Ceradini-Gavarini approach. Some sources of uncertainties are introduced in the structural system and in the load definition. The reliability-optimization problem is formulated as the minimization of the volume of the structure subjected to determi…

Mathematical optimizationControl and OptimizationOptimization problemComputer scienceMonte Carlo methodStructural system0211 other engineering and technologiesTruss02 engineering and technology0203 mechanical engineeringDynamic problemReliability-based designDynamic shakedownReliability (statistics)021106 design practice & managementElastic plastic trusseProbabilistic logicComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Graphics and Computer-Aided DesignComputer Science ApplicationsShakedown020303 mechanical engineering & transportsControl and Systems EngineeringSettore ICAR/08 - Scienza Delle CostruzioniSoftwareStochastic wind loadStructural and Multidisciplinary Optimization
researchProduct

Reliable measures of plastic deformations for elastic plastic structures in shakedown conditions

2020

A new formulation for evaluating reliable measures of the plastic deformations occurring in the transient phase of a structure in shakedown conditions is proposed. The structure is thought as constituted by elastic perfectly plastic material and subjected to a combination of fixed and cyclic loads. The proposed formulation consists in the search for the optimal plastic strain field that minimize a suitable objective function defining a strain energy measure related to the plastic strains at the shakedown limit. The typical self-stress field can be obtained as the elastic structural response to an assigned plastic strain field respecting appropriate ductility limits for the material. Without…

Elastic plastic structures Elastic shakedown Plastic deformations Self-stress fields Transient phasebusiness.industryLinear elasticityStructural engineeringPlasticityStrain energyShakedownCross section (physics)Bending momentLimit (mathematics)DuctilitybusinessSettore ICAR/08 - Scienza Delle CostruzioniMathematics
researchProduct

Optimization of structures with unrestricted dynamic shakedown constraints

2015

The unrestricted dynamic shakedown theory is here utilized with the aim to formulate different optimal design problems for structures mainly subjected to seismic loads. In particular, reference is made to plane frame structures constituted by elastic perfectly plastic material subjected to load combinations characterized by the presence of simultaneous fixed and seismic actions. The design problems, formulated on the ground of a statical approach, are devoted to structures with and without seismic protection devices, with special emphasis to seismic isolators. For the proposed design problem formulations different constraints are utilized; actually, for structures without protection devices…

Optimal designEngineeringControl and OptimizationServiceability (structure)business.industryProblem FormulationsSeismic loadingdynamic shakedown optimal designStructural engineeringComputer Graphics and Computer-Aided DesignComputer Science ApplicationsShakedownModalControl and Systems EngineeringBase isolationbusinessEngineering design processSettore ICAR/08 - Scienza Delle CostruzioniSoftware
researchProduct

Discrete variables structural design of frames safe against buckling

2014

Discrete variables structural design bucklingSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

On the structural optimization in presence of base isolating devices

2012

The minimum volume design of plane frames constituted by elastic perfectly plastic material and subjected to appropriate combinations of fixed, cyclic and dynamic loads is studied. The influence on the design, in terms of cost (volume) and behavioural features, of seismic protecting devices is particularly focused. The considered protecting device is a lead rubber bearing base isolation system. Two optimal design problem formulations are proposed for the structure with or without the protecting device, both based on the so-called statical approach. The minimum volume frame is reached accounting for three different resistance limits: the purely elastic limit, the (elastic) shakedown limit an…

structural optimization seismic loadings isolating devices.Settore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Analysis and design of elastic plastic structures subjected to dynamic loads

In the last decades, the concept of “optimization” has reached considerable value in many different fields of scientific research and, in particular, it has assumed great importance in the field of structural mechanics. The present study describes and shows the scientific path followed in the three years of doctoral studies. The state of the art concerning the optimization of elastic plastic structures subjected to quasi-static loads was already well established at the beginning of the Ph.D. course. Actually, it was already faced the study of structures subjected to quasi-static cyclic loads able to ensure different structural behaviors in relation to different intensity levels of the appli…

Optimal designElastic perfectly plastic structureSeismic loadingLimited ductilityMinimum volumeBucklingOptimal design; Continuous and discrete variables; Seismic loading; Element Slenderness; Limited ductility; Buckling; P-Delta effects; Minimum volume; Probabilistic dynamic shakedown; Elastic perfectly plastic structures;Continuous and discrete variableElement SlenderneSettore ICAR/08 - Scienza Delle CostruzioniP-Delta effectProbabilistic dynamic shakedown
researchProduct

Structural Design of Frames Able to Prevent Element Buckling

2012

Two formulations of a special multicriterion optimal design problem devoted to elastic perfectly plastic steel frame structures subjected to different combinations of static and dynamic loads are presented. In particular, two minimum volume design problem formulations are proposed: in the first one the structure is designed so as to be able to elastically behave for the assigned fixed loads, to elastically shakedown for serviceability seismic load conditions and to prevent the instantaneous collapse for suitably chosen combinations of fixed and ultimate seismic loadings; in the second one the structure must also satisfy further appropriate constraints related to element buckling. The action…

multicriterion design steel frames dynamic loads buckling.Settore ICAR/08 - Scienza Delle Costruzioni
researchProduct

LRPH device optimization for axial and shear stresses

2020

The paper concerns an in-depth study of a special connection for steel structures and the formulation of the related optimal design problem. The connection is called Limited Resistance Rigid Perfectly Plastic Hinge (LRPH) and it represents an innovative device devoted to join steel beam elements of frame structures. The device consists in a sequence of steel cross sections constituted by two parallel flanges with suitably different thickness connected by as many webs with constant and equal thickness. The fundamental innovation of the device is the possibility of designing special connections with elastic stiffness and limit strength independent of each other. Such a special characteristic …

Materials scienceSteel connectionsOptimal shapeComputational MechanicsBuilding and ConstructionStructural optimizationEquivalent stiffnessInnovative deviceShear (geology)Mechanics of MaterialsArchitectureComposite materialLimited strengthSafety Risk Reliability and QualityCivil and Structural Engineering
researchProduct

Evaluation of the shakedown limit load multiplier for stochastic seismic actions

2017

A new approach for the evaluation of the shakedown limit load multiplier for structures subjected to a combination of quasi-statically variable loads and seismic actions is presented. The common case of frame structures constituted by elastic perfectly plastic material is considered. The acting load history during the lifetime of the structure will be defined as a suitable combination of never ending quasi-statical loads, variable within an appropriate given domain, and stochastic seismic actions occurring for limited time interval. The proposed approach utilizes the Monte Carlo method in order to generate a suitable large number of seismic acceleration histories and the corresponding shake…

Mathematical optimizationElastic plastic frameMonte Carlo method02 engineering and technologyCondensed Matter Physic01 natural sciences0203 mechanical engineeringQuasi-statical and seismic loadingMechanics of Material0101 mathematicsDynamic shakedownMathematicsbusiness.industryCumulative distribution functionMechanical EngineeringProbabilistic approachStructural engineeringCondensed Matter PhysicsShakedown010101 applied mathematicsMonte Carlo method020303 mechanical engineering & transportsMechanics of MaterialsLimit loadMultiplier (economics)businessSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Dynamic shakedown design of structures under repeated seismic loads

2013

The paper is devoted to the formulation of an optimal design (minimum volume) problem of elastic perfectly plastic structures subjected to suitable combinations of static (fixed) and dynamic (seismic) loads. The structure is constrained to simultaneously respect two different safety criteria; actually, it must exhibit an elastic shakedown behaviour for the combination of loads characterizing the serviceability conditions and it must prevent the instantaneous collapse for the highest expected load condition (combination of loads characterized by the presence of fixed loads and maximum expected intensity of seismic action). The shakedown limit behaviour for the optimal structure will be impos…

optimal design dynamic shakedown minimum volume.Settore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Experimental and numerical analysis of flexural behaviour of GFRP pultruded material

2014

Settore ICAR/08 - Scienza Delle CostruzioniExperimental analysis numerical analysisGFRP pultruded material
researchProduct

Performance-Based Engineering of Wind-Excited Structures: A General Methodology

2016

The current prescriptive design philosophy that relies simply on meeting requirements stipulated in standards is shifting towards a performance-based design (PBD) approach for achieving designs that rationally meet society’s need for a truly safe built environment. Extensive research has facilitated the successful adoption of PBD in earthquake engineering, but the same cannot be said for wind engineering. Therefore, the need exists to initiate a similar effort by defining a framework that fully embraces the concepts of PBD during the design of building systems to resist severe wind events. This paper illustrates the development of such a PBD framework. In particular, a method is proposed sp…

Finite element methodEarthquake engineeringDesignComputer sciencebusiness.industryBudget controlStructural analysis020101 civil engineering02 engineering and technologyStructural engineeringEngineering mathematicsFinite element method0201 civil engineering020303 mechanical engineering & transportsEarthquake engineering0203 mechanical engineeringExcited stateSettore ICAR/08 - Scienza Delle Costruzionibusiness
researchProduct

Optimal design of elastic plastic frames accounting for seismic protection devices

2013

The optimal design of elastic perfectly plastic steel frames with or without suitable protection devices and subjected to static as well as seismic loadings is studied. Two minimum volume problem formulations are proposed, on the grounds of the so-called statical approach, accounting for three different resistance limits: the purely elastic limit, the (elastic) shakedown limit and the instantaneous collapse limit. The adopted load combinations are characterized by the presence of fixed loads, of quasi-static perfect cyclic loads and dynamic (seismic) loads. The linear elastic effects of the dynamic actions are studied by utilizing a modal technique. The proposed treatment is referred to the…

Optimal designEngineeringControl and OptimizationOptimization problembusiness.industryMinimum volume design Steel frames Seismic loads Base isolation Cross bracing.Seismic loadingLinear elasticityCross bracingAccountingStructural engineeringComputer Graphics and Computer-Aided DesignComputer Science ApplicationsShakedownControl and Systems EngineeringLinearizationBase isolationbusinessSettore ICAR/08 - Scienza Delle CostruzioniSoftware
researchProduct