6533b827fe1ef96bd1286787

RESEARCH PRODUCT

An efficient framework for the elasto-plastic reliability assessment of uncertain wind excited systems

Luigi PalizzoloAhsan KareemAntonina PirrottaSeymour M.j. SpencePietro Tabbuso

subject

Subset Simulation.Mathematical optimizationLinear programmingLinear elasticityProbabilistic logicDynamic wind effect020101 civil engineering02 engineering and technologyBuilding and ConstructionWind loadReliability analysi0201 civil engineeringShakedown020303 mechanical engineering & transportsElasto-plastic structure0203 mechanical engineeringExcited stateSubset simulationMultiplier (economics)Limit state designSettore ICAR/08 - Scienza Delle CostruzioniSafety Risk Reliability and QualityDynamic shakedownCivil and Structural EngineeringMathematics

description

Abstract In this paper a method to efficiently evaluate the reliability of elastic-perfectly plastic structures is proposed. The method is based on combining dynamic shakedown theory with Subset Simulation. In particular, focus is on describing the shakedown behavior of uncertain elasto-plastic systems driven by stochastic wind loads. The ability of the structure to shakedown is assumed as a limit state separating plastic collapse from a safe, if not elastic, state of the structure. The limit state is therefore evaluated in terms of a probabilistic load multiplier estimated through solving a series of linear programming problems posed in terms of the responses of the underlying linear elastic model and self-stress distribution. The efficiency of the proposed procedure is guaranteed by the simplicity of the mathematical programming problem, the underlying structural model solved at each iteration, and the efficiency of Subset Simulation. The rigor of the approach is assured by the dynamic shakedown theory. The applicability of the framework is illustrated on a steel frame example.

https://doi.org/10.1016/j.strusafe.2015.09.001