0000000000121634
AUTHOR
Denis Thérien
Algebraic Results on Quantum Automata
We use tools from the algebraic theory of automata to investigate the class of languages recognized by two models of Quantum Finite Automata (QFA): Brodsky and Pippenger’s end-decisive model, and a new QFA model whose definition is motivated by implementations of quantum computers using nucleo-magnetic resonance (NMR). In particular, we are interested in the new model since nucleo-magnetic resonance was used to construct the most powerful physical quantum machine to date. We give a complete characterization of the languages recognized by the new model and by Boolean combinations of the Brodsky-Pippenger model. Our results show a striking similarity in the class of languages recognized by th…
The Crane Beach Conjecture
A language L over an alphabet A is said to have a neutral letter if there is a letter e/spl isin/A such that inserting or deleting e's from any word in A* does not change its membership (or non-membership) in L. The presence of a neutral letter affects the definability of a language in first-order logic. It was conjectured that it renders all numerical predicates apart from the order predicate useless, i.e., that if a language L with a neutral letter is not definable in first-order logic with linear order then it is not definable in first-order. Logic with any set /spl Nscr/ of numerical predicates. We investigate this conjecture in detail, showing that it fails already for /spl Nscr/={+, *…
The Many Faces of a Translation
First-order translations have recently been characterized as the maps computed by aperiodic single-valued nondeterministic finite transducers (NFTs). It is shown here that this characterization lifts to "V-translations" and "V-single-valued-NFTs", where V is an arbitrary monoid pseudovariety. More strikingly, 2-way V-machines are introduced, and the following three models are shown exactly equivalent to Eilenberg's classical notion of a bimachine when V is a group variety or when V is the variety of aperiodic monoids: V-translations, V-single-valued-NFTs and 2-way V-transducers.
Circuit Lower Bounds via Ehrenfeucht-Fraisse Games
In this paper we prove that the class of functions expressible by first order formulas with only two variables coincides with the class of functions computable by AC/sup 0/ circuits with a linear number of gates. We then investigate the feasibility of using Ehrenfeucht-Fraisse games to prove lower bounds for that class of circuits, as well as for general AC/sup 0/ circuits.
Logics for context-free languages
We define matchings, and show that they capture the essence of context-freeness. More precisely, we show that the class of context-free languages coincides with the class of those sets of strings which can be defined by sentences of the form ∃ bϕ, where ϕ is first order, b is a binary predicate symbol, and the range of the second order quantifier is restricted to the class of matchings. Several variations and extensions are discussed.
First-order expressibility of languages with neutral letters or: The Crane Beach conjecture
A language L over an alphabet A is said to have a neutral letter if there is a letter [email protected]?A such that inserting or deleting e's from any word in A^* does not change its membership or non-membership in L. The presence of a neutral letter affects the definability of a language in first-order logic. It was conjectured that it renders all numerical predicates apart from the order predicate useless, i.e., that if a language L with a neutral letter is not definable in first-order logic with linear order, then it is not definable in first-order logic with any set N of numerical predicates. Named after the location of its first, flawed, proof this conjecture is called the Crane Beach …