0000000000121713
AUTHOR
Jörg Nieberle
Interaction between a water-in-oil microemulsion and a linear-dendritic poly(propylene oxide)–polyglycerol block copolymer
We present small angle scattering and dielectric spectroscopy results on the influence of an amphiphilic diblock copolymer on the structure and dynamics of a microemulsion. We use a water-in-oil (w/o) droplet microemulsion based on the anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate), that forms spherical water droplets coated by a monolayer of AOT dispersed in the continuous oil matrix. The studied polymer consists of a hydrophobic poly(propylene oxide) (PPO) block and a hydrophilic hyperbranched polyglycerol with 74 glycerol units (NG74). Combining small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) we find that the droplet structure is preserved …
Ring-Opening Multibranching Polymerization
Synthesis and Characterization of Poly(glyceryl glycerol) Block Copolymers
Double-Hydrophilic Linear-Hyperbranched Block Copolymers Based on Poly(ethylene oxide) and Poly(glycerol)
A convenient 4-step (2-pot) approach for the synthesis of biocompatible, double hydrophilic linear-hyperbranched block copolymers based on poly(ethylene oxide) (PEO) and poly(glycerol) (PG) is described. The polymers consisting exclusively of an aliphatic polyether structure were prepared from linear PEO-b-(l-PG) precursor block copolymers, obtained via anionic polymerization of ethylene oxide and subsequently ethoxyethyl glycidyl ether (EEGE). In order to generate initiating functionalities for glycidol, the protected hydroxyl groups of the P(EEGE) block were recovered by hydrolysis with hydrochloric acid. Partial deprotonation of the linear poly(glycerol) block with cesium hydroxide permi…
Gold Nanoparticles Coated with a Thermosensitive Hyperbranched Polyelectrolyte: Towards Smart Temperature and pH Nanosensors
Synthesis of Hyperbranched Polyglycerol in a Continuous Flow Microreactor
Hyperbranched polymers have been synthesized in a microreactor for the first time, employing the known ring-opening multibranching polymerization of glycidol. Microreactors are well-known to be beneficial for highly exothermic reactions because of their capability to enhance mass and heat transfer due to short diffusion pathways and large interfacial areas per volume. The characteristics of the microstructured reaction system were utilized to engineer a continuous flow process for the preparation of well-defined hyperbranched polyglycerols with molecular weights up to 1,000 g/mol. Increased flow rates, as well as the use of highly polar solvents, led to the partial formation of very narrowl…
Cytotoxicity and chemosensitizing activity of amphiphilic poly(glycerol)-poly(alkylene oxide) block copolymers.
All polymeric chemosensitizers proposed thus far have a linear poly(ethylene glycol) (PEG) hydrophilic block. To testify whether precisely this chemical structure and architecture of the hydrophilic block is a prerequisite for chemosensitization, we tested a series of novel block copolymers containing a hyperbranched polyglycerol segment as a hydrophilic block (PPO-NG copolymers) on multi-drug-resistant (MDR) tumor cells in culture. PPO-NG copolymers inhibited MDR of three cell lines, indicating that the linear PEG can be substituted for a hyperbranched polyglycerol block without loss of the polymers' chemosensitizing activity. The extent of MDR reversal increased with the polymers affinity…
Hyperbranched Polyglycerols with Elevated Molecular Weights: A Facile Two-Step Synthesis Protocol Based on Polyglycerol Macroinitiators
Hyperbranched polyglycerol (PG) is established as one of the few hyperbranched polymers that offer the possibility to control molecular weight up to Mn = 6000 g/mol. This work introduces a facile 2-step strategy that relies on the use of a low molecular weight PG (Mn = 500 and 1000 g/mol) as a macroinitiator for the slow addition of glycidol, permitting to overcome previous limitations concerning molecular weights and molecular weight control. A systematic investigation of the effect of the degree of deprotonation on the control of the polymerization reaction has been carried out. A series of hyperbranched PGs with molecular weights up to Mn = 24000 g/mol has been obtained under fully contr…