0000000000122093
AUTHOR
Ildiko Mesteri
External Volume Expansion Increases Subcutaneous Thickness, Cell Proliferation, and Vascular Remodeling in a Murine Model
Background Fat grafting is a powerful tool for soft-tissue reconstruction; however, the science behind recipient bed preparation has not been thoroughly explored. External volume expansion using suction before fat grafting has been used clinically to improve reliability and consistency of graft survival. The authors developed a murine model to investigate the underlying mechanism of external volume expansion. Methods The authors created an external volume expansion device using a soft-silicone dome connected to a vacuum source (25 mmHg) to treat the dorsum of mice, and the response was compared with treatment with an occlusive dressing. Treated areas were monitored with magnetic resonance i…
Early kinetics of integration of collagen-glycosaminoglycan regenerative scaffolds in a diabetic mouse model.
Collagen-glycosaminoglycan scaffolds, originally designed to treat severe burns, are now commonly used in patients with complex wounds associated with diabetes mellitus. In this study, the authors investigated how the thickness of the scaffold would affect cellular integration with the diabetic host and whether this can be accelerated using subatmospheric pressure wound therapy devices.Collagen-glycosaminoglycan scaffolds, 500 to 2000-μm thick, were applied to dorsal wounds in genetically diabetic mice. In addition, 1000-μm collagen-glycosaminoglycan scaffolds with and without silicone were treated with a subatmospheric pressure device (-125 mmHg). On days 5 and 10, cellular and vascular in…