External Volume Expansion Increases Subcutaneous Thickness, Cell Proliferation, and Vascular Remodeling in a Murine Model
Background Fat grafting is a powerful tool for soft-tissue reconstruction; however, the science behind recipient bed preparation has not been thoroughly explored. External volume expansion using suction before fat grafting has been used clinically to improve reliability and consistency of graft survival. The authors developed a murine model to investigate the underlying mechanism of external volume expansion. Methods The authors created an external volume expansion device using a soft-silicone dome connected to a vacuum source (25 mmHg) to treat the dorsum of mice, and the response was compared with treatment with an occlusive dressing. Treated areas were monitored with magnetic resonance i…
Mir-4674 Regulates Angiogenesis In Tissue Injury By Targeting P38K Signaling In Endothelial Cells
Neoangiogenesis is critical for tissue repair in response to injury such as myocardial ischemia or dermal wound healing. MicroRNAs are small noncoding RNAs and important regulators of angiogenesis under physiological and pathological disease states. Therefore, identification of microRNAs that may restore impaired angiogenesis in response to tissue injury may provide new targets for therapy. Using a microRNA microarray profiling approach, we identified a human-specific microRNA, miR-4674, that was significantly decreased in patients after myocardial tissue injury and had an endothelial cell (EC)-enriched expression pattern. Functionally, overexpression of miR-4674 markedly attenuated EC pro…
Erratum to “The SCARE guidelines: Consensus-based surgical case report guidelines” [Int. J. Surg. 34 (2016) 180–186]
Noninvasive Flap Preconditioning by Foam-Mediated External Suction Improves the Survival of Fasciocutaneous Axial-Pattern Flaps in a Type 2 Diabetic Murine Model
Background Advances in reconstructive surgery are leading to an increased number of flaps at risk for ischemic necrosis, because of either intrinsic (e.g., larger flap size) or extrinsic (e.g., diabetes) factors. Methods to preoperatively improve flap vascularity and limit postoperative ischemia are lacking. Noninvasive suction, using either a macrodeformational silicone cup interface (external volume expansion) or a microdeformational polyurethane foam interface (foam-mediated external volume expansion), has been shown to induce angiogenesis in tissues. The authors investigated whether the preoperative use of external volume expansion/foam-mediated external volume expansion improves flap s…
Angiogenesis in Wounds Treated by Microdeformational Wound Therapy.
BACKGROUND:: Mechanical forces play an important role in tissue neovascularization and are a constituent part of modern wound therapies. The mechanisms by which vacuum assisted closure (VAC) modulates wound angiogenesis are still largely unknown. OBJECTIVE:: To investigate how VAC treatment affects wound hypoxia and related profiles of angiogenic factors as well as to identify the anatomical characteristics of the resultant, newly formed vessels. METHODS:: Wound neovascularization was evaluated by morphometric analysis of CD31-stained wound cross-sections as well as by corrosion casting analysis. Wound hypoxia and mRNA expression of HIF-1α and associated angiogenic factors were evaluated by…
MiR-409-3p regulates angiogenesis, white to brown adipose tissue transition, and insulin resistance through MAP4K3 and ZEB1 signaling pathways.
Endothelial cells (ECs) within the microvasculature of brown adipose tissue (BAT) are important in regulating the plasticity of adipocytes in response to increased metabolic demand by modulating the angiogenic response. However, the mechanism of EC-adipocyte crosstalk during this process is not completely understood. We used RNA sequencing to profile microRNAs derived from BAT ECs of obese mice and identified an anti-angiogenic microRNA, miR-409-3p. MiR-409-3p overexpres- sion inhibited EC angiogenic properties; whereas, its inhibition had the opposite effects. Mechanistic studies revealed that miR-409-3p targets ZEB1 and MAP4K3. Knockdown of ZEB1/MAP4K3 phenocopied the angiogenic effects o…
Early kinetics of integration of collagen-glycosaminoglycan regenerative scaffolds in a diabetic mouse model.
Collagen-glycosaminoglycan scaffolds, originally designed to treat severe burns, are now commonly used in patients with complex wounds associated with diabetes mellitus. In this study, the authors investigated how the thickness of the scaffold would affect cellular integration with the diabetic host and whether this can be accelerated using subatmospheric pressure wound therapy devices.Collagen-glycosaminoglycan scaffolds, 500 to 2000-μm thick, were applied to dorsal wounds in genetically diabetic mice. In addition, 1000-μm collagen-glycosaminoglycan scaffolds with and without silicone were treated with a subatmospheric pressure device (-125 mmHg). On days 5 and 10, cellular and vascular in…
QS280. Mesoscopic Traffic Flow Theory Characterizes Microhemodynamics in Chemically-Induced Murine Colitis
The STROCSS statement: Strengthening the Reporting of Cohort Studies in Surgery
Abstract Introduction The development of reporting guidelines over the past 20 years represents a major advance in scholarly publishing with recent evidence showing positive impacts. Whilst over 350 reporting guidelines exist, there are few that are specific to surgery. Here we describe the development of the STROCSS guideline ( St rengthening the R eporting o f C ohort S tudies in S urgery). Methods and analysis We published our protocol apriori . Current guidelines for case series (PROCESS), cohort studies (STROBE) and randomised controlled trials (CONSORT) were analysed to compile a list of items which were used as baseline material for developing a suitable checklist for surgical cohort…