0000000000122145

AUTHOR

Jörg J. Schneider

Hydroxo Hydrido Complexes of Iron and Cobalt (Sn−Fe−Sn, Sn−Co−Sn): Probing Agostic Sn⋅⋅⋅H−M Interactions in Solution and in the Solid State

Bis(toluene)iron 9 reacts with Lappert's stannylene [Sn[CH(SiMe3)2]2] (4) to form the paramagnetic bis-stannylene complex [[(eta6-toluene)Fe-Sn-[CH(SiMe3)2]2]2] (10). Compound 10 reacts with H2O to form the hydroxo hydrido complex [(eta6-C7H8)(mu-OH)(H)-Fe-[Sn[CH(SiMe3)2]2]2] (12) in high yield; its solid-state structure has been elucidated by X-ray and neutron diffraction analysis. In agreement with the 1H NMR results, 12 contains a hydridic ligand whose exact coordination geometry could be determined by neutron diffraction. The 1H and 119Sn NMR analysis of 12 suggested a multicenter Sn/Sn/H/Fe bonding interaction in solution, based on significantly large values of J(Sn,H,Fe) = 640+/-30 Hz…

research product

Carbon nanotube bags: catalytic formation, physical properties, two-dimensional alignment and geometric structuring of densely filled carbon tubes.

The catalytic CVD synthesis, using propyne as carbon precursor and Fe(NO3)3 as catalyst precursor inside porous alumina, gives carbon nanotube (CNT) bags in a well-arranged two-dimensional order. The tubes have the morphology of bags or fibers, since they are completely filled with smaller helicoidal CNTs. This morphology has so far not been reported for CNTs. Owing to the dense filling of the outer mother CNTs with small helicoidal CNTs, the resulting CNT fibers appear to be stiff and show no sign of inflation, as sometimes observed with hollow CNTs. The fiber morphology was observed by raster electron microscopy (REM), transmission electron microscopy (TEM), and atomic force microscopy (A…

research product

Experimental and Theoretical Investigations on the Synthesis, Structure, Reactivity, and Bonding of the Stannylene-Iron Complex Bis{{bis(2-tert-butyl-4,5,6-trimethyl-phenyl)}Sn}Fe(η6-toluene)

The pi-(arene)bis(stannylene) complex bis(bis(2-tert-butyl-4,5,6-trimethylphenyl)SnFe(eta6-toluene) (Sn-Fe-Sn, 15) is accessible in high yields by a metal-atom-mediated synthesis between iron atoms, toluene, and the stannylene [bis(2-tert-butyl-4,5,6-trimethylphenyl)Sn](3). Complex 15 has a half-sandwich structure with short Fe -Sn bonds (2.432(1) A) and a trigonal-planar coordination at both the Fe and Sn atoms. The distance between the two Sn centers is 3.56 A. Complex 15 is stable under ambient conditions and displays a pi-arene lability, so far rarely observed for (arene)iron complexes; this leads to an irreversible substitution of the arene and formation of fivefold-coordinated zeroval…

research product

Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity.

Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mossbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mossbauer spectra on temperature and particle size is explai…

research product

Decacyclene as complexation manifold: synthesis, structure and properties of its Fe2 and Fe4 slipped triple-decker complexes.

Reaction of [(eta(5)-Me4EtC5)Fe(II)Cl(tmeda)] (tmeda = N,N,N'N'-tetramethylethylenediamine) with a polyanion solution of decacyclene (1) results in the formation of the triple-deckers [{(eta(5)-Me4EtC5)Fe}2-mu2-(eta(6):eta(6)-decacyclene)] (3) and [{(eta(5)-Me4EtC5)Fe}4-mu4-(eta(6):eta(6):eta(6):eta(6)-decacyclene)] (4). Metal complexation in 3 and 4 occurs on opposite faces of the pi perimeter in an alternating mode. The decacyclene ring adopts a gently twisted molecular propeller geometry with twofold crystallographic symmetry (C2). Complex 4 crystallizes in the chiral space group C222(1); the investigated crystal only contains decacyclene rings with M chirality. The handedness can be ass…

research product