0000000000122212
AUTHOR
Antonio Martínez Naveira
Total curvatures of compact complex submanifolds in $$C/P^n$$
LetM be a complex submanifold in\(C/P^n\). We define the total curvatures ofM and we get a local interpretation of them. Finally, we give a topological characterization for the total (non-absolute) curvature of complex hypersurfaces in\(C/P^n\).
The volume of geodesic balls and tubes about totally geodesic submanifolds in compact symmetric spaces
AbstractLet M be a compact Riemannian symmetric space. We give an analytical expression for the area and volume functions of geodesic balls in M and for the area and volume functions of tubes around some totally geodesic submanifolds P of M. We plot the graphs of these functions for some compact irreducible Riemannian symmetric spaces of rank two.
Conformal Killing forms on nearly Kähler manifolds
Abstract We study conformal Killing forms on compact 6-dimensional nearly Kahler manifolds. Our main result concerns forms of degree 3. Here we give a classification showing that all conformal Killing 3-forms are linear combinations of dω and its Hodge dual ⁎ d ω , where ω is the fundamental 2-form of the nearly Kahler structure. The proof is based on a fundamental integrability condition for conformal Killing forms. We have partial results in the case of conformal Killing 2-forms. In particular we show the non-existence of J-anti-invariant Killing 2-forms.
On the volume of unit vector fields on spaces of constant sectional curvature
A unit vector field X on a Riemannian manifold determines a submanifold in the unit tangent bundle. The volume of X is the volume of this submanifold for the induced Sasaki metric. It is known that the parallel fields are the trivial minima.
The constant osculating rank of the Wilking manifold
We prove that the osculating rank of the Wilking manifold V3 = (SO (3) × SU (3)) / U• (2), endowed with the metric over(g, )1, equals 2. The knowledge of the osculating rank allows us to solve the differential equation of the Jacobi vector fields. These results can be applied to determine the area and the volume of geodesic spheres and balls. To cite this article: E. Macias-Virgos et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2007 Academie des sciences.
On the Energy of Distributions, with Application to the Quaternionic Hopf Fibrations
The energy of an oriented q-distribution ? in a compact oriented manifold M is defined to be the energy of the section of the Grassmannian manifold of oriented q-planes in M induced by ?. In the Grassmannian, the Sasaki metric is considered. We show here a condition for a distribution to be a critical point of the energy functional. In the spheres, we see that Hopf fibrations \(\) are critical points. Later, we prove the instability for these fibrations.