0000000000122298

AUTHOR

Thibault Duretz

Numerical modeling of eastern Tibetan-type margin: Influences of surface processes, lithospheric structure and crustal rheology

The eastern Tibetan margin is characterized by a steep topographic gradient and remarkably lateral variations in crustal/lithospheric structure and thermal state. GPS measurements show that the surface convergence rate in this area is strikingly low. How can such a mountain range grow without significant upper crustal shortening? In order to investigate the formation mechanism of the eastern Tibetan-type margins, we conducted 2D numerical simulations based on finite difference and marker-in-cell techniques. The numerical models were constrained with geological and geophysical observations in the eastern Tibetan margin. Several major parameters responsible for topography building, such as th…

research product

Thermomechanical modeling of slab eduction

[1] Plate eduction is a geodynamic process characterized by normal-sense coherent motion of previously subducted continental plate. This mechanism may occur after slab detachment has separated the negatively buoyant oceanic plate from the positively buoyant orogenic root. Eduction may therefore be partly responsible for exhumation of high pressure rocks and late orogenic extension. We used two-dimensional thermomechanical modeling to investigate the main features of the plate eduction model. The results show that eduction can lead to the quasi adiabatic decompression of the subducted crust (≈2 GPa) in a timespan of 5 My, large localized extensional strain in the former subduction channel, f…

research product

A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’ method

SUMMARY Calculating surface topography in geodynamic models is a common numerical problem. Besides other approaches, the so-called ‘sticky air’ approach has gained interest as a free-surface proxy at the top boundary. The often used free slip condition is thereby vertically extended by introducing a low density, low viscosityfluid layer. This allows the air/crust interface to behave in a similar manner to a true free surface. We present here a theoretical analysis that provides the physical conditions under which the sticky air approach is a valid approximation of a true free surface. Two cases are evaluated that characterize the evolution of topography on different timescales: (1) isostati…

research product