0000000000122494
AUTHOR
Frédéric Dias
Observation of Kuznetsov-Ma soliton dynamics in optical fibre
International audience; The nonlinear Schro¨dinger equation (NLSE) is a central model of nonlinear science, applying to hydrodynamics, plasma physics, molecular biology and optics. The NLSE admits only few elementary analytic solutions, but one in particular describing a localized soliton on a finite background is of intense current interest in the context of understanding the physics of extreme waves. However, although the first solution of this type was the Kuznetzov-Ma (KM) soliton derived in 1977, there have in fact been no quantitative experiments confirming its validity. We report here novel experiments in optical fibre that confirm the KM soliton theory, completing an important serie…
The dynamics of a developing CW supercontinuum: Analytical predictions and experiments
International audience; We show that the development of the supercontinuum spectrum in the quasi-CW regime can be interpreted analytically in terms of Akhmediev Breathers. Theory and experiment are in excellent agreement.
Kuznetsov-Ma Soliton Dynamics in Nonlinear Fiber Optics
The Kuznetzov-Ma (KM) soliton is a solution of the nonlinear Schrodinger equation derived in 1977 but never observed experimentally. Here we report experiments showing KM soliton dynamics in nonlinear breather evolution in optical fiber.
Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation
Numerical simulations of the onset phase of continuous wave supercontinuum generation from modulation instability show that the structure of the field as it develops can be interpreted in terms of the properties of Akhmediev Breathers. Numerical and analytical results are compared with experimental measurements of spectral broadening in photonic crystal fiber using nanosecond pulses
Supercontinuum to solitons: New nonlinear structures in fiber propagation
We review our recent work in the field of optical rogue wave physics and applications. Beginning from a brief survey of the well-known noise and incoherence processes in optical fiber supercontinuum generation, we trace the links to recent developments in studying the emergence of high contrast localised breather structures in both spontaneous and induced nonlinear instabilities. In the latter case, we discuss our recent measurements that have reported the experimental observation of the Peregrine soliton, a unique class of rational soliton predicted to exist over 25 years ago and never previously observed.
Optical rogue waves and localized structures in nonlinear fiber optics
We review our recent work in the field of optical rogue wave physics. Beginning from a brief survey of the well-known instabilities in optical fiber, we trace the links to recent developments in studying the emergence of high contrast localized breather structures in both spontaneous and induced nonlinear instabilities.
Modélisation mathématique et étude expérimentale des instabilités non-linéaires, des vagues scélérates et des phénomènes extrêmes
Nonlinear dynamics of modulated signals in optical fibers
International audience; The nonlinear Schrodinger equation (NLSE) describes the nonlinear waves localization dynamics in weakly dispersive media, and it has been extensively studied in various contexts in nonlinear science. A particular class of solutions of the NLSE that has recently attracted considerable attention is that of the solitons on finite background as their localization dynamics have been proposed as an important mechanism underlying the formation of extreme amplitude waves on the surface of the ocean. Much of this work has also been motivated by an extensive parallel research effort research in optics that has shown how nonlinear optical fiber systems can be used to implement …
Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability
Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the u…
The Peregrine soliton in nonlinear fibre optics
International audience; The Peregrine soliton is a localized nonlinear structure predicted to exist over 25 years ago, but not so far experimentally observed in any physical system. It is of fundamental significance because it is localized in both time and space, and because it defines the limit of a wide class of solutions to the nonlinear Schrödinger equation (NLSE). Here, we use an analytic description of NLSE breather propagation to implement experiments in optical fibre generating femtosecond pulses with strong temporal and spatial localization, and near-ideal temporal Peregrine soliton characteristics. In showing that Peregrine soliton characteristics appear with initial conditions th…
Dynamique des solitons de Kuznetsov-Ma observée en optique fibrée non-linéaire
International audience; Le soliton de Kuznetzov-Ma est une solution de l'équation de Schrödinger non-linéaire qui a été identifiée dès 1977 mais qui à ce jour n'avait encore jamais été observée expérimentalement. Nous décrivons ici une expérience mettant en évidence la dynamique du soliton KM à travers la propagation non-linéaire de breathers dans une fibre optique.
Optical rogue waves: Physics and impact
International audience; We review our recent work in the field of optical rogue wave physics and applications. Beginning from a brief survey of the well-known instabilities in optical fiber supercontinuum generation, we trace the links to recent developments in studying the emergence of high contrast localized breather structures in both spontaneous and induced nonlinear instabilities. We also discuss the precise nature of optical rogue wave statistics and examine the dynamics leading to the formation of extreme events in the context of noise-driven supercontinuum generation.
Peregrine soliton in optical fiber-based systems
International audience; We report the first observation in optics of the Peregrine soliton, a novel class of nonlinear localized structure. Two experimental configurations are explored and the impact of non-ideal initial conditions is discussed.
Lumière sur les vagues scélérates : le soliton de Peregrine enfin observé !
National audience
Rediscovered dynamics of nonlinear fiber optics: from breathers to extreme localisation
International audience