0000000000123664

AUTHOR

S. Aparicio

Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella

[EN] Two outdoor photobioreactors were operated to evaluate the effect of variable ambient temperature on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Four experiments were carried out in different seasons, maintaining the temperature-controlled PBR at around 25¿°C (by either heating or cooling), while the temperature in the non-temperature-controlled PBR was allowed to vary with the ambient conditions. Temperatures in the range of 15¿30¿°C had no significant effect on the microalgae cultivation performance. However, when the temperature rose to 30¿35¿°C microalgae viability was significantly reduced. Sudden temperature rises triggered AOB growth in the indig…

research product

Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF)

[EN] This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD.L-1 , 14.9 mg N.L-1 and 0.5 mg P.L-1 , respectively. Harvested solar…

research product

Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria

[EN] Outdoor microalgae cultivation systems treating anaerobic membrane bioreactor (AnMBR) effluents usually present ammonium oxidising bacteria (AOB) competition with microalgae for ammonium uptake, which can cause nitrite accumulation. In literature, nitrite effects over microalgae have shown controversial results. The present study evaluates the nitrite inhibition role in a microalgae-nitrifying bacteria culture. For this purpose, pilot- and lab-scale assays were carried out. During the continuous outdoor operation of the membrane photobioreactor (MPBR) plant, biomass retention time (BRT) of 2 d favoured AOB activity, which caused nitrite accumulation. This nitrite was confirmed to inhib…

research product

Assessing and modeling nitrite inhibition in microalgae-bacteria consortia for wastewater treatment by means of photo-respirometric and chlorophyll fluorescence techniques

Abstract Total nitrite (TNO2 = HNO2 + NO−2) accumulation due to the activity of ammonia-oxidizing bacteria (AOB) was monitored in microalgae-bacteria consortia, and the inhibitory effect of nitrite/free nitrous acid (NO2-N/FNA) on microalgae photosynthesis and inhibition mechanism was studied. A culture of Scenedesmus was used to run two sets of batch reactors at different pH and TNO2 concentrations to evaluate the toxic potential of NO2-N and FNA. Photo-respirometric tests showed that NO2-N accumulation has a negative impact on net oxygen production rate (OPRNET). Chlorophyll a fluorescence analysis was used to examine the biochemical effects of NO2-N stress and the mechanism of NO2-N inhi…

research product

Global sensitivity and uncertainty analysis of a microalgae model for wastewater treatment.

The results of a global sensitivity and uncertainty analysis of a microalgae model applied to a Membrane Photobioreactor (MPBR) pilot plant were assessed. The main goals of this study were: (I) to identify the sensitivity factors of the model through the Morris screening method, i.e. the most influential factors; (II) to calibrate the influential factors online or offline; and (III) to assess the model's uncertainty. Four experimental periods were evaluated, which encompassed a wide range of environmental and operational conditions. Eleven influential factors (e.g. maximum specific growth rate, light intensity and maximum temperature) were identified in the model from a set of 34 kinetic pa…

research product

Comprehensive assessment of the microalgae-nitrifying bacteria competition in microalgae-based wastewater treatment systems: Relevant factors, evaluation methods and control strategies

[EN] Due to their capacity to assimilate carbon dioxide and nutrients, microalgae-based cultivation systems have emerged as a green solution for intensive wastewater treatment. However, when large concentrations of ammonium are present the competition between microalgae and ammonium-oxidising bacteria plays a significant role. Microalgae use ammonium to synthesise proteins, photosynthetic pigments and nucleic acids, while ammonium-oxidising bacteria use it as a source of electrons and oxidise it to nitrite.Several authors have studied the isolated factors that influence microalgae-nitrifying bacteria competition, although a comprehensive analysis of this interesting topic is still lacking. …

research product

Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions

[EN] A kinetic model of autotrophic microalgal growth in sewage was developed to determine the biokinetic processes involved, including carbon-, nitrogen- and phosphorus-limited microalgal growth, dependence on light intensity, temperature and pH, light attenuation and gas exchange to the atmosphere. A new feature was the differentiation between two metabolic pathways of phosphorus consumption according to the availability of extracellular phosphorus. Two scenarios were differentiated: phosphorus-replete and -deplete culture conditions. In the former, the microalgae absorbed phosphorus to grow and store polyphosphate. In the latter the microalgae used the stored polyphosphate as a phosphoru…

research product

Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators

[EN] Microalgae cultivation has been receiving increasing interest in wastewater remediation due to their ability to assimilate nutrients present in wastewater streams. In this respect, cultivating microalgae in membrane photobioreactors (MPBRs) allows decoupling the solid retention time (SRT) from the hydraulic retention time (HRT), which enables to increase the nutrient load to the photobioreactors (PBRs) while avoiding the wash out of the microalgae biomass. The reduction of the PBR light path from 25 to 10 cm increased the nitrogen and phosphorus recovery rates, microalgae biomass productivity and photosynthetic efficiency by 150, 103, 194 and 67%, respectively.The areal biomass product…

research product