0000000000123839

AUTHOR

Cristel Chandre

Kolmogorov-Arnold-Moser–Renormalization-Group Analysis of Stability in Hamiltonian Flows

We study the stability and breakup of invariant tori in Hamiltonian flows using a combination of Kolmogorov-Arnold-Moser (KAM) theory and renormalization-group techniques. We implement the scheme numerically for a family of Hamiltonians quadratic in the actions to analyze the strong coupling regime. We show that the KAM iteration converges up to the critical coupling at which the torus breaks up. Adding a renormalization consisting of a rescaling of phase space and a shift of resonances allows us to determine the critical coupling with higher accuracy. We determine a nontrivial fixed point and its universality properties.

research product

Critical Attractor and Universality in a Renormalization Scheme for Three Frequency Hamiltonian Systems

We study an approximate renormalization-group transformation to analyze the breakup of invariant tori for three degrees of freedom Hamiltonian systems. The scheme is implemented for the spiral mean torus. We find numerically that the critical surface is the stable manifold of a critical nonperiodic attractor. We compute scaling exponents associated with this fixed set, and find that they can be expected to be universal.

research product

Strange attractor for the renormalization flow for invariant tori of Hamiltonian systems with two generic frequencies

We analyze the stability of invariant tori for Hamiltonian systems with two degrees of freedom by constructing a transformation that combines Kolmogorov-Arnold-Moser theory and renormalization-group techniques. This transformation is based on the continued fraction expansion of the frequency of the torus. We apply this transformation numerically for arbitrary frequencies that contain bounded entries in the continued fraction expansion. We give a global picture of renormalization flow for the stability of invariant tori, and we show that the properties of critical (and near critical) tori can be obtained by analyzing renormalization dynamics around a single hyperbolic strange attractor. We c…

research product

Determination of the threshold of the break-up of invariant tori in a class of three frequency Hamiltonian systems

We consider a class of Hamiltonians with three degrees of freedom that can be mapped into quasi-periodically driven pendulums. The purpose of this paper is to determine the threshold of the break-up of invariant tori with a specific frequency vector. We apply two techniques: the frequency map analysis and renormalization-group methods. The renormalization transformation acting on a Hamiltonian is a canonical change of coordinates which is a combination of a partial elimination of the irrelevant modes of the Hamiltonian and a rescaling of phase space around the considered torus. We give numerical evidence that the critical coupling at which the renormalization transformation starts to diverg…

research product

Renormalization-group analysis for the transition to chaos in Hamiltonian systems

Abstract We study the stability of Hamiltonian systems in classical mechanics with two degrees of freedom by renormalization-group methods. One of the key mechanisms of the transition to chaos is the break-up of invariant tori, which plays an essential role in the large scale and long-term behavior. The aim is to determine the threshold of break-up of invariant tori and its mechanism. The idea is to construct a renormalization transformation as a canonical change of coordinates, which deals with the dominant resonances leading to qualitative changes in the dynamics. Numerical results show that this transformation is an efficient tool for the determination of the threshold of the break-up of…

research product

Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom

We construct an approximate renormalization transformation that combines Kolmogorov-Arnold-Moser (KAM)and renormalization-group techniques, to analyze instabilities in Hamiltonian systems with three degrees of freedom. This scheme is implemented both for isoenergetically nondegenerate and for degenerate Hamiltonians. For the spiral mean frequency vector, we find numerically that the iterations of the transformation on nondegenerate Hamiltonians tend to degenerate ones on the critical surface. As a consequence, isoenergetically degenerate and nondegenerate Hamiltonians belong to the same universality class, and thus the corresponding critical invariant tori have the same type of scaling prop…

research product

Universality for the breakup of invariant tori in Hamiltonian flows

In this article, we describe a new renormalization-group scheme for analyzing the breakup of invariant tori for Hamiltonian systems with two degrees of freedom. The transformation, which acts on Hamiltonians that are quadratic in the action variables, combines a rescaling of phase space and a partial elimination of irrelevant (non-resonant) frequencies. It is implemented numerically for the case applying to golden invariant tori. We find a nontrivial fixed point and compute the corresponding scaling and critical indices. If one compares flows to maps in the canonical way, our results are consistent with existing data on the breakup of golden invariant circles for area-preserving maps.

research product